IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2618-d1093369.html
   My bibliography  Save this article

Parameter Identification of DFIG Converter Control System Based on WOA

Author

Listed:
  • Youtao Li

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Yun Zeng

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Jing Qian

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Fanjie Yang

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Shihao Xie

    (Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

The converter is an important component of a wind turbine, and its control system has a significant impact on the dynamic output characteristics of the wind turbine. For the double-fed induction generator (DFIG) converter, the control parameter identification method is proposed. In this paper, a detailed dynamic model of DFIG with the converter is built, and the trajectory sensitivity method is used to study the observation points that are sensitive to the change of control parameters as the observation quantity for control parameter identification; the Whale Optimization Algorithm (WOA) is used to study the converter control system parameters that dominate the output characteristics of DFIG in the dynamic full-process simulation. To validate the proposed method, four classical test functions are used to verify the effectiveness of the algorithm, and the control parameters are identified by setting a three-phase grounded short-circuit fault under maximum power point tracking (MPPT), and the identification results are compared with particle swarm optimization (PSO) and chaotic particle swarm optimization (CPSO) to show the superiority of the proposed method. The final results show that the proposed WOA can identify the control system parameters faster and more accurately.

Suggested Citation

  • Youtao Li & Yun Zeng & Jing Qian & Fanjie Yang & Shihao Xie, 2023. "Parameter Identification of DFIG Converter Control System Based on WOA," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2618-:d:1093369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yang & Wang, Wei & Ghadimi, Noradin, 2017. "Electricity load forecasting by an improved forecast engine for building level consumers," Energy, Elsevier, vol. 139(C), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    2. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    3. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    4. Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).
    5. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    6. Wu, Cong & Li, Jiaxuan & Liu, Wenjin & He, Yuzhe & Nourmohammadi, Samad, 2023. "Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm," Applied Energy, Elsevier, vol. 345(C).
    7. Muhammad Ali & Krishneel Prakash & Carlos Macana & Ali Kashif Bashir & Alireza Jolfaei & Awais Bokhari & Jiří Jaromír Klemeš & Hemanshu Pota, 2022. "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-16, March.
    8. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    9. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    10. Hu, Shuai & Xiang, Yue & Huo, Da & Jawad, Shafqat & Liu, Junyong, 2021. "An improved deep belief network based hybrid forecasting method for wind power," Energy, Elsevier, vol. 224(C).
    11. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    12. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    13. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    14. Li, Tianyu & Liu, Huiying & Ding, Daolin, 2018. "Predictive energy management of fuel cell supercapacitor hybrid construction equipment," Energy, Elsevier, vol. 149(C), pages 718-729.
    15. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    16. Xing, Yazhou & Zhang, Su & Wen, Peng & Shao, Limin & Rouyendegh, Babak Daneshvar, 2020. "Load prediction in short-term implementing the multivariate quantile regression," Energy, Elsevier, vol. 196(C).
    17. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    18. Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
    19. Keyvan Karamnejadi Azar & Armin Kakouee & Morteza Mollajafari & Ali Majdi & Noradin Ghadimi & Mojtaba Ghadamyari, 2022. "Developed Design of Battle Royale Optimizer for the Optimum Identification of Solid Oxide Fuel Cell," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    20. Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2618-:d:1093369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.