IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2245-d1080934.html
   My bibliography  Save this article

Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation

Author

Listed:
  • Vidura Sumanasena

    (Centre for Data Analytics and Cognition (CDAC), La Trobe University, Bundoora, VIC 3086, Australia)

  • Lakshitha Gunasekara

    (Centre for Data Analytics and Cognition (CDAC), La Trobe University, Bundoora, VIC 3086, Australia)

  • Sachin Kahawala

    (Centre for Data Analytics and Cognition (CDAC), La Trobe University, Bundoora, VIC 3086, Australia)

  • Nishan Mills

    (Centre for Data Analytics and Cognition (CDAC), La Trobe University, Bundoora, VIC 3086, Australia)

  • Daswin De Silva

    (Centre for Data Analytics and Cognition (CDAC), La Trobe University, Bundoora, VIC 3086, Australia)

  • Mahdi Jalili

    (School of Engineering, RMIT University, Melbourne, VIC 3000, Australia)

  • Seppo Sierla

    (Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • Andrew Jennings

    (Centre for Data Analytics and Cognition (CDAC), La Trobe University, Bundoora, VIC 3086, Australia)

Abstract

Electric vehicles (EVs) are advancing the transport sector towards a robust and reliable carbon-neutral future. Given this increasing uptake of EVs, electrical grids and power networks are faced with the challenges of distributed energy resources, specifically the charge and discharge requirements of the electric vehicle infrastructure (EVI). Simultaneously, the rapid digitalisation of electrical grids and EVs has led to the generation of large volumes of data on the supply, distribution and consumption of energy. Artificial intelligence (AI) algorithms can be leveraged to draw insights and decisions from these datasets. Despite several recent work in this space, a comprehensive study of the practical value of AI in charge-demand profiling, data augmentation, demand forecasting, demand explainability and charge optimisation of the EVI has not been formally investigated. The objective of this study was to design, develop and evaluate a comprehensive AI framework that addresses this gap in EVI. Results from the empirical evaluation of this AI framework on a real-world EVI case study confirm its contribution towards addressing the emerging challenges of distributed energy resources in EV adoption.

Suggested Citation

  • Vidura Sumanasena & Lakshitha Gunasekara & Sachin Kahawala & Nishan Mills & Daswin De Silva & Mahdi Jalili & Seppo Sierla & Andrew Jennings, 2023. "Artificial Intelligence for Electric Vehicle Infrastructure: Demand Profiling, Data Augmentation, Demand Forecasting, Demand Explainability and Charge Optimisation," Energies, MDPI, vol. 16(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2245-:d:1080934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kempitiya, Thimal & Sierla, Seppo & De Silva, Daswin & Yli-Ojanperä, Matti & Alahakoon, Damminda & Vyatkin, Valeriy, 2020. "An Artificial Intelligence framework for bidding optimization with uncertainty in multiple frequency reserve markets," Applied Energy, Elsevier, vol. 280(C).
    2. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    3. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    4. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    5. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kinga Stecuła & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "AI-Driven Urban Energy Solutions—From Individuals to Society: A Review," Energies, MDPI, vol. 16(24), pages 1-34, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyula Dörgő & Viktor Sebestyén & János Abonyi, 2018. "Evaluating the Interconnectedness of the Sustainable Development Goals Based on the Causality Analysis of Sustainability Indicators," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    2. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    3. Indra de Soysa, 2022. "Economic freedom vs. egalitarianism: An empirical test of weak & strong sustainability, 1970–2017," Kyklos, Wiley Blackwell, vol. 75(2), pages 236-268, May.
    4. Martinico-Perez, Marianne Faith G. & Schandl, Heinz & Fishman, Tomer & Tanikawa, Hiroki, 2018. "The Socio-Economic Metabolism of an Emerging Economy: Monitoring Progress of Decoupling of Economic Growth and Environmental Pressures in the Philippines," Ecological Economics, Elsevier, vol. 147(C), pages 155-166.
    5. Makarenko, Inna & Serpeninova, Yulia & Pogorila, Kateryna, 2018. "Інституційне Забезпечення Фінансування Сталого Розвитку У Світлі Мультистейкхолдерського Підходу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 4(2), June.
    6. Edgar Cambaza & Shigenobu Koseki & Shuso Kawamura, 2018. "Aflatoxins in Mozambique: Impact and Potential for Intervention," Agriculture, MDPI, vol. 8(7), pages 1-11, July.
    7. Ogundele Lasun Tunde & Okunlola Oluyemi Adewole & Mohannad Alobid & István Szűcs & Yacouba Kassouri, 2022. "Sources and Sectoral Trend Analysis of CO 2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches," Energies, MDPI, vol. 15(3), pages 1-12, January.
    8. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    9. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    10. Vincenzo Formisano & Bernardino Quattrociocchi & Maria Fedele & Mario Calabrese, 2018. "From Viability to Sustainability: The Contribution of the Viable Systems Approach (VSA)," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    11. Zhijiang Li & Decai Tang & Mang Han & Brandon J. Bethel, 2018. "Comprehensive Evaluation of Regional Sustainable Development Based on Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    12. Rakshith Subramanya & Matti Yli-Ojanperä & Seppo Sierla & Taneli Hölttä & Jori Valtakari & Valeriy Vyatkin, 2021. "A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves," Energies, MDPI, vol. 14(5), pages 1-23, February.
    13. Jakob Keller & Martin Jung & Rainer Lasch, 2022. "Sustainability Governance: Insights from a Cocoa Supply Chain," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    14. Steve O’Hern & Roni Utriainen & Hanne Tiikkaja & Markus Pöllänen & Niina Sihvola, 2021. "Exploratory Analysis of Pedestrian Road Trauma in Finland," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    15. Carmen Ruiz-Puente & Daniel Jato-Espino, 2020. "Systemic Analysis of the Contributions of Co-Located Industrial Symbiosis to Achieve Sustainable Development in an Industrial Park in Northern Spain," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    16. Rositsa T. Ilieva, 2017. "Urban Food Systems Strategies: A Promising Tool for Implementing the SDGs in Practice †," Sustainability, MDPI, vol. 9(10), pages 1-35, September.
    17. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    18. Giorgio Mion & Angela Broglia & Angelo Bonfanti, 2019. "Do Codes of Ethics Reveal a University’s Commitment to Sustainable Development? Evidence from Italy," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    19. Mark G. Edwards, 2021. "The growth paradox, sustainable development, and business strategy," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3079-3094, November.
    20. Xiaoli Zhao & Pavel Castka & Cory Searcy, 2020. "ISO Standards: A Platform for Achieving Sustainable Development Goal 2," Sustainability, MDPI, vol. 12(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2245-:d:1080934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.