IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2219-d1080006.html
   My bibliography  Save this article

Current Status and Development Direction of Low-Carbon Exploitation Technology for Heavy Oil

Author

Listed:
  • Haifeng Li

    (University of Chinese Academy of Sciences, Beijing 100048, China
    Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
    PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Qiang Wang

    (Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
    PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Yongbin Wu

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

Abstract

With the strategic goal of “carbon peaking and carbon neutral” in China, new requirements are also put forward for the thermal recovery of heavy oil. In view of the problems of excessive greenhouse gas emission, low steam utilization rate, poor economic efficiency, and limited reservoir application of steam stimulation replacement technology in China, the emerging technologies of medium- and low-temperature thermal fluid, solvent-assisted high-temperature steam injection, solvent-based medium- and low-temperature waterless recovery and in situ electric heating-assisted recovery are discussed in terms of technical principles, technical parameters, experimental/field effects, and technical and economic potential. The technical principles, technical parameters, experimental/field results, and techno-economic potential of low-carbon heavy oil recovery technologies are summarized and future development directions and trends are anticipated. The study’s findings indicate that some of the technologies that have been tested in the field, such as HWVP, EMVAPEX, AH-VAPEX, LASER, and ESEIEH, can be developed by relying on the original well groups for production and can reduce greenhouse gas emissions, such as CO 2 , by about 80% and improve crude oil recovery by 5% to 10%, while the technologies concerned have outstanding effects on increasing oil production rate and lowering upfront capital investment. Some of the technologies that have been tested significantly increase oil production rate, lower initial capital expenditure, and enable solvent recycling, among other things. Among them, COBEEOR and N-SOLV technologies can also lower the amount of asphaltene in the output crude oil, enhance the API of the recovered crude oil, and provide strong economic advantages. CSP, CHSI, and hot water solvent injection were tested in indoor two-dimensional and three-dimensional experiments to validate their feasibility, while CO 2 , propane, and butane solvents were initially screened and some of the technologies’ mechanisms were revealed to lay the groundwork for pilot projects. The executive summary of the research findings will serve as a guide for future low-carbon extraction technology research and development in China.

Suggested Citation

  • Haifeng Li & Qiang Wang & Yongbin Wu, 2023. "Current Status and Development Direction of Low-Carbon Exploitation Technology for Heavy Oil," Energies, MDPI, vol. 16(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2219-:d:1080006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Artur Wodołażski & Jacek Skiba & Katarzyna Zarębska & Jarosław Polański & Adam Smolinski, 2020. "CFD Modeling of the Catalyst Oil Slurry Hydrodynamics in a High Pressure and Temperature as Potential for Biomass Liquefaction," Energies, MDPI, vol. 13(21), pages 1-13, October.
    2. Yury V. Ilyushin, 2022. "Development of a Process Control System for the Production of High-Paraffin Oil," Energies, MDPI, vol. 15(17), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jifei Yu & Wenchao Liu & Yang Yang & Mingkai Sun & Yanfeng Cao & Zicheng Meng, 2024. "Multiphysics Field Coupled to a Numerical Simulation Study on Heavy Oil Reservoir Development via Electromagnetic Heating in a SAGD-like Process," Energies, MDPI, vol. 17(20), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Kowalska & Ewelina Brodawka & Adam Smoliński & Katarzyna Zarębska, 2022. "The European Education Initiative as a Mitigation Mechanism for Energy Transition," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Zhenxiang Zhang & Jin Yang & Shengnan Chen & Qibin Ou & Yichi Zhang & Ximo Qu & Yafei Guo, 2021. "Numerical Simulation of Pulsed Gravel Packing Completion in Horizontal Wells," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Yongchao Xue & Chong Cao & Qingshuang Jin & Qianyu Wang, 2023. "Re-Evaluation of Oil Bearing for Wells with Long Production Histories in Low Permeability Reservoirs Using Data-Driven Models," Energies, MDPI, vol. 16(2), pages 1-21, January.
    4. Yanni Zhang & Rongxi Li & Shengli Xi & Jianwen Gao & Lei Chen & Hexin Huang & Bangsheng Zhao & Ahmed Khaled, 2023. "Quartz Origins and Paleoenvironmental Controls on Organic Matter Accumulation of Marine Shale in the Ordovician Wulalike Formation, Northwestern Ordos Basin, China: Significance for Shale Gas Explorat," Energies, MDPI, vol. 16(14), pages 1-23, July.
    5. Zhengbin Wu & Hanzhao Chen & Xidong Cai & Qiyang Gou & Liangliang Jiang & Kai Chen & Zhangxin Chen & Shu Jiang, 2023. "Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil," Energies, MDPI, vol. 16(12), pages 1-29, June.
    6. Sofianos Panagiotis Fotias & Andreas Georgakopoulos & Vassilis Gaganis, 2022. "Workflows to Optimally Select Undersaturated Oil Viscosity Correlations for Reservoir Flow Simulations," Energies, MDPI, vol. 15(24), pages 1-23, December.
    7. Yury V. Ilyushin, 2022. "Development of a Process Control System for the Production of High-Paraffin Oil," Energies, MDPI, vol. 15(17), pages 1-10, September.
    8. Dmitry Radoushinsky & Kirill Gogolinskiy & Yousef Dellal & Ivan Sytko & Abhishek Joshi, 2023. "Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    9. Yue Ma & Fan Shao & Jing Wang & Han Yang & Changtao Yue, 2023. "Examination of the Structure and Definition of the Mechanism of Formation of Products by Pyrolysis of Tarim Crude Oil," Energies, MDPI, vol. 16(4), pages 1-12, February.
    10. Adam Smoliński & Andrzej Bąk, 2022. "Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation," Energies, MDPI, vol. 15(16), pages 1-4, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2219-:d:1080006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.