IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2154-d1077679.html
   My bibliography  Save this article

Effect of Microchannel Diameter on Electroosmotic Flow Hysteresis

Author

Listed:
  • An Eng Lim

    (Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
    School of Mechanical and Aerospace Engineering (MAE), Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore)

  • Shireen Goh

    (Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore)

Abstract

Electroosmotic flow (EOF) commonly involves inhomogeneous fluids in practical applications. EOF hysteresis, which is defined as direction-dependent flow behavior, has been extensively investigated for dissimilar solution pair systems. Hitherto, there is no investigation being conducted to examine the effect of microchannel diameter on the hysteresis phenomenon. In this investigation, current monitoring experiments and finite element numerical simulations were performed to examine the intensification of the hysteretic behavior with reduction in the microchannel diameter. Three solution pairs were selected for the study, namely KCl–NaCl (dissimilar ionic species with similar concentration), NaCl and KCl (similar ionic species but different concentrations) solution pairs, with microchannels of 5 μm and 100 μm internal diameters. EOF hysteresis augmentation for reduced channel diameter (i.e., 5 μm microchannel) is due to the coupling effect of the resultant wider/tighter interfacial width and the minority pH-governing ion-driven hysteresis, which was earlier discovered to be the origin of EOF hysteresis. This investigation provides an appropriate understanding of the channel dimensional effect on EOF behavior involving multiple fluids, and the outcomes can potentially be implemented on chemical and biological microfluidic systems with adjustable throughput.

Suggested Citation

  • An Eng Lim & Shireen Goh, 2023. "Effect of Microchannel Diameter on Electroosmotic Flow Hysteresis," Energies, MDPI, vol. 16(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2154-:d:1077679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2154/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Ni & Jinbo Chen & Feifan Wang & Yanjuan Zheng & Yang Zhang & Bo Gao, 2023. "Investigation into Dynamic Pressure Pulsation Characteristics in a Centrifugal Pump with Staggered Impeller," Energies, MDPI, vol. 16(9), pages 1-14, April.
    2. Kin Lung Jerry Kan & Ka Wai Eric Cheng & Hai-Chen Zhuang, 2023. "Electric Analysis of the Maritime Application High-Frequency Magnetohydrodynamic Thruster," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2154-:d:1077679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.