IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2085-d1075154.html
   My bibliography  Save this article

PLF Design for DC-DC Converters Based on Accurate IL Estimations

Author

Listed:
  • Marco Bosi

    (Wavecontrol SL, Carrer de Pallars 65, 08014 Barcelona, Spain
    Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Albert-Miquel Sánchez

    (EMZER Technological Solutions SL, Carrer de Pallars 65, 08014 Barcelona, Spain)

  • Francisco Javier Pajares

    (EMZER Technological Solutions SL, Carrer de Pallars 65, 08014 Barcelona, Spain)

  • Alessandro Campanini

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Lorenzo Peretto

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

Abstract

Even though today’s electromagnetic compatibility (EMC) standards and measurement techniques set specific limitations and a clear methodology to measure the conducted emissions (CE) of equipment under tests (EUTs), the design methodology of a suitable power-line filter (PLF) to solve non-compliance is, in general, neither accurate nor efficient. This is due to different reasons, such as unknown actual load and line impedances, unknown dominant mode in the CE, and/or inappropriate instrumentation for the appropriate measurements. The objective of this paper is to investigate if different topologies of switching mode power supplies (SMPSs) lead to different PLF structures. For the sake of exemplification, the analysis is focused on switched-mode DC-DC converters. From an EMC point of view, these devices can be completely modeled by means of Scattering (S)–parameter and CE measurements. Additionally, an analysis of their circuit models has been performed to allow a better comprehension of their characterization. In this paper, the circuit models of three different types of DC-DC converters are presented, and their component values (including nonlinearities and parasitic effects introduced by the actual behavior of the circuit elements) are estimated using the S-parameter characterization. Then, a new methodology for PLF design, based on accurate insertion loss (IL) estimations, is applied to obtain the optimal PLF for one of the converters. This methodology is experimentally tested and validated.

Suggested Citation

  • Marco Bosi & Albert-Miquel Sánchez & Francisco Javier Pajares & Alessandro Campanini & Lorenzo Peretto, 2023. "PLF Design for DC-DC Converters Based on Accurate IL Estimations," Energies, MDPI, vol. 16(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2085-:d:1075154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Faifer & Luigi Piegari & Marco Rossi & Sergio Toscani, 2021. "An Average Model of DC–DC Step-Up Converter Considering Switching Losses and Parasitic Elements," Energies, MDPI, vol. 14(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bosi & Albert Miquel Sánchez & Francisco Javier Pajares & Lorenzo Peretto, 2023. "Three-Phase Modal Noise Analysis and Optimal Three-Phase Power Line Filter Design," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lebogang Masike & Michael Njoroge Gitau & Grain P. Adam, 2022. "A Unified Rule-Based Small-Signal Modelling Technique for Two-Switch, Non-Isolated DC–DC Converters in CCM," Energies, MDPI, vol. 15(15), pages 1-23, July.
    2. Martin A. Alarcón-Carbajal & José E. Carvajal-Rubio & Juan D. Sánchez-Torres & David E. Castro-Palazuelos & Guillermo J. Rubio-Astorga, 2022. "An Output Feedback Discrete-Time Controller for the DC-DC Buck Converter," Energies, MDPI, vol. 15(14), pages 1-21, July.
    3. Angelo Lunardi & Luís F. Normandia Lourenço & Enkhtsetseg Munkhchuluun & Lasantha Meegahapola & Alfeu J. Sguarezi Filho, 2022. "Grid-Connected Power Converters: An Overview of Control Strategies for Renewable Energy," Energies, MDPI, vol. 15(11), pages 1-33, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2085-:d:1075154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.