IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1462-d1054913.html
   My bibliography  Save this article

Analysis and Design of Resonant DC/AC Converters with Energy Dosing for Induction Heating

Author

Listed:
  • Nikolay Madzharov

    (Department of Electronics, Faculty of Electrical Engineering and Electronics, Technical University of Gabrovo, 4 H. Dimitar, 5300 Gabrovo, Bulgaria)

  • Nikolay Hinov

    (Department of Power Electronics, Faculty Electronic Engineering and Technology, Technical University of Sofia, 8, Kliment Ohridski Blvd, 1000 Sofia, Bulgaria)

Abstract

This article presents an analysis and methodology for designing resonant inverters with energy dosing for induction heating applications. These power topologies are characterized by the fact that the power consumption of the DC power source does not depend on the magnitude and changes of the load but is a function of the operating frequency, the value of the resonant capacitor and the DC supply voltage. Based on a description of the electromagnetic processes in the power circuit, analytical dependencies have been determined that describe the behavior of the studied power electronic devices. The expressions for the current of the AC circuit in the various stages of the converter’s operation are obtained, and on this basis an engineering methodology for design and prototyping is presented. The proposed methodology is verified through two specific numerical examples, simulation and experimental studies. In this way, the possibilities of these power electronic devices for self-adaptation to the needs and changes of the load, which is very important in the implementation of induction technologies, are demonstrated. Furthermore, the creation and testing of engineering methodologies for the design of power electronic devices are very useful for improving power electronics education.

Suggested Citation

  • Nikolay Madzharov & Nikolay Hinov, 2023. "Analysis and Design of Resonant DC/AC Converters with Energy Dosing for Induction Heating," Energies, MDPI, vol. 16(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1462-:d:1054913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pradeep Vishnuram & Gunabalan Ramachandiran & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes," Energies, MDPI, vol. 14(20), pages 1-34, October.
    2. Yongseung Oh & Jaeeul Yeon & Jayoon Kang & Ilya Galkin & Wonsoek Oh & Kyumin Cho, 2021. "Sensorless Control of Voltage Peaks in Class-E Single-Ended Resonant Inverter for Induction Heating Rice Cooker," Energies, MDPI, vol. 14(15), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Feng Li & Jhih-Cheng Hu & Ming-Shi Huang & Yi-Liang Lin & Chun-Wei Lin & Yu-Min Meng, 2022. "Load Estimation for Induction Heating Cookers Based on Series RLC Natural Resonant Current," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Pradeep Vishnuram & Sudhanshu Kumar & Vivek Kumar Singh & Thanikanti Sudhakar Babu & Ramani Kannan & Khairul Nisak Bt Md Hasan, 2022. "Phase Shift-Controlled Dual-Frequency Multi-Load Converter with Independent Power Control for Induction Cooking Applications," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. Alagarsamy Sureshkumar & Ramachandiran Gunabalan & Pradeep Vishnuram & Sridhar Ramsamy & Benedetto Nastasi, 2022. "Investigation on Performance of Various Power Control Strategies with Bifilar Coil for Induction Surface Melting Application," Energies, MDPI, vol. 15(9), pages 1-25, April.
    4. Kommoju Naga Durga Veera Sai Eswar & Mohan Arun Noyal Doss & Pradeep Vishnuram & Ali Selim & Mohit Bajaj & Hossam Kotb & Salah Kamel, 2022. "Comprehensive Study on Reduced DC Source Count: Multilevel Inverters and Its Design Topologies," Energies, MDPI, vol. 16(1), pages 1-25, December.
    5. Sezer Aslan & Metin Ozturk & Nihan Altintas, 2023. "A Comparative Evaluation of Wide-Bandgap Semiconductors for High-Performance Domestic Induction Heating," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1462-:d:1054913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.