IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1233-d1044819.html
   My bibliography  Save this article

Assessing Different Inoculum Treatments for Improved Production of Hydrogen through Dark Fermentation

Author

Listed:
  • Saleh Al-Haddad

    (BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
    Kuwait Institute for Scientific Research, Al-Jaheth Street, Shuwaikh, Kuwait City 13109, Kuwait)

  • Cynthia Kusin Okoro-Shekwaga

    (BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Louise Fletcher

    (BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Andrew Ross

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Miller Alonso Camargo-Valero

    (BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
    Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales 170003, Colombia)

Abstract

Hydrogen gas (H 2 ) is an energy carrier that does not generate carbon dioxide emissions during combustion, but several processes in use for its production demand high energy inputs associated with fossil fuels and greenhouse emissions. Biological processes, such as dark fermentation (DF), have the potential to remove the dependency on fossil fuels in H 2 production. DF is a process that encourages fermentative bacteria to ferment organic substrates to produce H 2 as a truly clean energy carrier, but its success depends on removing the presence of competing H 2− consuming microorganisms in the inoculum consortia. This paper addresses a strategy to enhance H 2 production from different types of substrates by testing inoculum pre-treatment processes to inactivate H 2− consuming bacteria, including acid-shock (pH 3), basic-shock (pH 10) and heat-shock (115 °C) methods. Digestate from anaerobic digesters processing sewage sludge was used to produce pre-treated inocula, which were subsequently tested in a batch bio-H 2 potential (BHP) test using glucose as a substrate. The results show that heat-shock pre-treatment was the best method, reporting a H 2 yield of 191.8 mL-H 2 /gVS added (the untreated inoculum reported 170.91 mL-H 2 /gVS added). Glucose conversion data show a high concentration of butyric acid in both treated and untreated inocula during BHP tests, which indicate that the butyrate pathway for H 2 production was dominant; shifting this to the formate route could further enhance net H 2 production. A standardised inoculum-conditioning method can help to consistently assess the biohydrogen potential of suitable feedstock for DF and maximise H 2 yields.

Suggested Citation

  • Saleh Al-Haddad & Cynthia Kusin Okoro-Shekwaga & Louise Fletcher & Andrew Ross & Miller Alonso Camargo-Valero, 2023. "Assessing Different Inoculum Treatments for Improved Production of Hydrogen through Dark Fermentation," Energies, MDPI, vol. 16(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1233-:d:1044819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    2. Chaganti, Subba Rao & Kim, Dong-Hoon & Lalman, Jerald A., 2012. "Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield," Renewable Energy, Elsevier, vol. 48(C), pages 117-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    3. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    6. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
    7. Rios-Del Toro, E. Emilia & Chi, Hetian & González-Álvarez, Víctor & Méndez-Acosta, Hugo O. & Arreola-Vargas, Jorge & Liu, Hao, 2021. "Coupling the biochemical and thermochemical biorefinery platforms to enhance energy and product recovery from Agave tequilana bagasse," Applied Energy, Elsevier, vol. 299(C).
    8. Przemysław Liczbiński & Sebastian Borowski, 2020. "Hyperthermophilic Treatment of Grass and Leaves to Produce Hydrogen, Methane and VFA-Rich Digestate: Preliminary Results," Energies, MDPI, vol. 13(11), pages 1-12, June.
    9. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    11. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    13. Monika Šabić Runjavec & Marija Vuković Domanovac & Ante Jukić, 2023. "Application of Industrial Wastewater and Sewage Sludge for Biohydrogen Production," Energies, MDPI, vol. 16(5), pages 1-15, March.
    14. Sun, Chihe & Liao, Qiang & Xia, Ao & Fu, Qian & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Wang, Zhengxin, 2020. "Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    17. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    18. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Chalima, Angelina & Hatzidaki, Angeliki & Karnaouri, Anthi & Topakas, Evangelos, 2019. "Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids," Applied Energy, Elsevier, vol. 241(C), pages 130-138.
    20. Karolina Kucharska & Patrycja Makoś-Chełstowska & Edyta Słupek & Jacek Gębicki, 2021. "Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation," Energies, MDPI, vol. 14(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1233-:d:1044819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.