IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p764-d1029930.html
   My bibliography  Save this article

A New Technique for Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform

Author

Listed:
  • Mohamed Adel Gabry

    (Department of Petroleum Engineering, The University of Houston, Houston, TX 77023, USA)

  • Ibrahim Eltaleb

    (Department of Petroleum Engineering, The University of Houston, Houston, TX 77023, USA)

  • Mohamed Y. Soliman

    (Department of Petroleum Engineering, The University of Houston, Houston, TX 77023, USA)

  • Syed M. Farouq-Ali

    (Department of Petroleum Engineering, The University of Houston, Houston, TX 77023, USA)

Abstract

The diagnostic fracture injection test (DFIT) is widely used to obtain the fracture closure pressure, reservoir permeability, and reservoir pressure. Conventional methods for analyzing DFIT are based on the assumption that a vertical well is drilled in ultra-low permeability reservoirs with potential multiple closures but fails to consider horizontal wells. There is still significant debate about the rigorousness and validity of these techniques due to the complexity of the hydraulic fracture opening and closure process and assumptions of conventional fracture detection methods. The paper introduces a new method for detecting fracture closure pressure using the continuous wavelet transform (CWT). The new method aims to decompose the pressure fall-off signal into multiple levels with different frequencies using the CWT. This “short wavy” function is stretched or compressed and placed at many positions along the signal to be analyzed. The wavelet then convoluted the signal yielding a wavelet coefficient value. The signal energy is observed during the fracture closure process (pressure fall-off) and the fracture closure event is identified when the signal energy stabilizes to a minimum level. A predefined simple commercial fracture simulation case with known fracture closure, flow regime modeling, and actual field cases was used to validate the new methodology.

Suggested Citation

  • Mohamed Adel Gabry & Ibrahim Eltaleb & Mohamed Y. Soliman & Syed M. Farouq-Ali, 2023. "A New Technique for Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform," Energies, MDPI, vol. 16(2), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:764-:d:1029930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengju Xing & John McLennan & Joseph Moore, 2020. "In-Situ Stress Measurements at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site," Energies, MDPI, vol. 13(21), pages 1-20, November.
    2. Muhammad Zain-Ul-Abedin & Andreas Henk, 2020. "Building 1D and 3D Mechanical Earth Models for Underground Gas Storage—A Case Study from the Molasse Basin, Southern Germany," Energies, MDPI, vol. 13(21), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Adel Gabry & Ibrahim Eltaleb & Mohamed Y. Soliman & S. M. Farouq-Ali, 2023. "Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangchao Zhang & You Li & Xiangjun Meng & Guangzhe Tao & Lei Wang & Hanqing Guo & Chuanqi Zhu & Hao Zuo & Zhi Qu, 2022. "Distribution Law of In Situ Stress and Its Engineering Application in Rock Burst Control in Juye Mining Area," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Maria Vicidomini & Diana D’Agostino, 2022. "Geothermal Source Exploitation for Energy Saving and Environmental Energy Production," Energies, MDPI, vol. 15(17), pages 1-5, September.
    3. Muhammad Zain-Ul-Abedin & Andreas Henk, 2023. "Thermal-Hydraulic-Mechanical (THM) Modelling of Short-Term Gas Storage in a Depleted Gas Reservoir—A Case Study from South Germany," Energies, MDPI, vol. 16(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:764-:d:1029930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.