IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8077-d1300873.html
   My bibliography  Save this article

Compression Techniques for Real-Time Control and Non-Time-Critical Big Data in Smart Grids: A Review

Author

Listed:
  • Kamil Prokop

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Andrzej Bień

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Szymon Barczentewicz

    (Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

Significant amounts of data need to be transferred in order to optimize the operation of power grids. The development of advanced metering and control infrastructure ensures a growth in the amount of data transferred within smart grids. Data compression is a strategy to reduce the burden. This paper presents current challenges in the field of time-series data compression. This paper’s novel contribution is the division of data in smart grids to real-time data used for control purposes and big data sets used for non-time-critical analysis of the system. Both of these two applications have different requirements for effective compression. Currently used algorithms are listed and described with their advantages and drawbacks for both of these applications. Details needed for the implementation of an algorithm were also provided. Comprehensive analysis and comparison are intended to facilitate the design of a data compression method tailored for a particular application. An important contribution is the description of the influence of data compression methods on cybersecurity, which is one of the major concerns in modern power grids. Future work includes the development of adaptive compression methods based on artificial intelligence, especially machine learning and quantum computing. This review will offer a solid foundation for the research and design of data compression methods.

Suggested Citation

  • Kamil Prokop & Andrzej Bień & Szymon Barczentewicz, 2023. "Compression Techniques for Real-Time Control and Non-Time-Critical Big Data in Smart Grids: A Review," Energies, MDPI, vol. 16(24), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8077-:d:1300873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahad M. Almasoudi, 2023. "Enhancing Power Grid Resilience through Real-Time Fault Detection and Remediation Using Advanced Hybrid Machine Learning Models," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    2. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    2. Ulaa AlHaddad & Abdullah Basuhail & Maher Khemakhem & Fathy Elbouraey Eassa & Kamal Jambi, 2023. "Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    3. Shivam Gupta & Jazmin Campos Zeballos & Gema del Río Castro & Ana Tomičić & Sergio Andrés Morales & Maya Mahfouz & Isimemen Osemwegie & Vicky Phemia Comlan Sessi & Marina Schmitz & Nady Mahmoud & Mnen, 2023. "Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-37, April.
    4. Xueliang Zhang & Jiawei Liu & Chi Zhang & Dongyan Shao & Zhiqiang Cai, 2023. "Innovation Performance Prediction of University Student Teams Based on Bayesian Networks," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Nasir Ayub & Usman Ali & Kainat Mustafa & Syed Muhammad Mohsin & Sheraz Aslam, 2022. "Predictive Data Analytics for Electricity Fraud Detection Using Tuned CNN Ensembler in Smart Grid," Forecasting, MDPI, vol. 4(4), pages 1-13, November.
    6. Qiang Wang & Dong Yu & Jinyu Zhou & Chaowu Jin, 2023. "Data Storage Optimization Model Based on Improved Simulated Annealing Algorithm," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    7. Jonathan Gumz & Diego Castro Fettermann & Enzo Morosini Frazzon & Mirko Kück, 2022. "Using Industry 4.0’s Big Data and IoT to Perform Feature-Based and Past Data-Based Energy Consumption Predictions," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
    8. Cheng Qian & Xing Liu & Colin Ripley & Mian Qian & Fan Liang & Wei Yu, 2022. "Digital Twin—Cyber Replica of Physical Things: Architecture, Applications and Future Research Directions," Future Internet, MDPI, vol. 14(2), pages 1-25, February.
    9. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    10. Mubarak Alrumaidhi & Mohamed M. G. Farag & Hesham A. Rakha, 2023. "Comparative Analysis of Parametric and Non-Parametric Data-Driven Models to Predict Road Crash Severity among Elderly Drivers Using Synthetic Resampling Techniques," Sustainability, MDPI, vol. 15(13), pages 1-30, June.
    11. Fatemehsadat Mirshafiee & Emad Shahbazi & Mohadeseh Safi & Rituraj Rituraj, 2023. "Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study," Energies, MDPI, vol. 16(1), pages 1-20, January.
    12. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8077-:d:1300873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.