IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7266-d1267793.html
   My bibliography  Save this article

Modeling Vehicle Fuel Consumption Using a Low-Cost OBD-II Interface

Author

Listed:
  • Magdalena Rykała

    (Faculty of Security, Logistics and Management, Military University of Technology, 00-908 Warsaw, Poland)

  • Małgorzata Grzelak

    (Faculty of Security, Logistics and Management, Military University of Technology, 00-908 Warsaw, Poland)

  • Łukasz Rykała

    (Faculty of Mechanical Engineering, Military University of Technology, 00-908 Warsaw, Poland)

  • Daniela Voicu

    (Faculty of Aircraft and Military Vehicles, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania)

  • Ramona-Monica Stoica

    (Faculty of Aircraft and Military Vehicles, Military Technical Academy “Ferdinand I”, 050141 Bucharest, Romania)

Abstract

As a result of ever-growing energy demands, motor vehicles are among the largest contributors to overall energy consumption. This has led researchers to focus on fuel consumption, which has important implications for the environment, the economy, and geopolitical stability. This article presents a comprehensive analysis of various fuel consumption modeling methods, with the aim of identifying parameters that significantly influence fuel consumption. The scientific novelty of this article lies in its use of low-cost technology, i.e., an OBD-II interface paired with a mobile phone, combined with modern mathematical modeling methods to create an accurate model of the fuel consumption of a vehicle. A vehicle test drive was performed, during which variations in selected parameters were recorded. Based on the obtained data, a model of the vehicle’s fuel consumption was built using three forecasting methods: a multivariate regression model, decision trees, and neural networks. The results show that the multivariate regression model obtained the lowest MSE, MAR, and MRSE coefficients, indicating that this was the best forecasting method among those tested. Sufficient forecast error results were obtained using neural networks, with increases of approximately 73%, 10%, and 131% in MSE, MAE, and MRAE, respectively, compared to regression results. The worst results were obtained with the decision tree model, with increases of approximately 163%, 21%, and 92% in MSE, MAE, and MRAE compared to the regression results.

Suggested Citation

  • Magdalena Rykała & Małgorzata Grzelak & Łukasz Rykała & Daniela Voicu & Ramona-Monica Stoica, 2023. "Modeling Vehicle Fuel Consumption Using a Low-Cost OBD-II Interface," Energies, MDPI, vol. 16(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7266-:d:1267793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kilian, Lutz & Zhou, Xiaoqing, 2022. "The impact of rising oil prices on U.S. inflation and inflation expectations in 2020–23," Energy Economics, Elsevier, vol. 113(C).
    2. Jiangtao Sun & Wei Dang & Fengqin Wang & Haikuan Nie & Xiaoliang Wei & Pei Li & Shaohua Zhang & Yubo Feng & Fei Li, 2023. "Prediction of TOC Content in Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study of Random Forest, Support Vector Machine, and XGBoost," Energies, MDPI, vol. 16(10), pages 1-26, May.
    3. Roman Michael Sennefelder & Rubén Martín-Clemente & Ramón González-Carvajal, 2023. "Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression," Energies, MDPI, vol. 16(11), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aharon, David Y. & Azman Aziz, Mukhriz Izraf & Kallir, Ido, 2023. "Oil price shocks and inflation: A cross-national examination in the ASEAN5+3 countries," Resources Policy, Elsevier, vol. 82(C).
    2. Ding, Shusheng & Zheng, Dandan & Cui, Tianxiang & Du, Min, 2023. "The oil price-inflation nexus: The exchange rate pass- through effect," Energy Economics, Elsevier, vol. 125(C).
    3. Ruiz, Miguel Haro & Schult, Christoph & Wunder, Christoph, 2024. "The effects of the Iberian exception mechanism on wholesale electricity prices and consumer inflation: A synthetic-controls approach," IWH Discussion Papers 5/2024, Halle Institute for Economic Research (IWH).
    4. Banerjee, Joshua J., 2024. "Inflationary oil shocks, fiscal policy, and debt dynamics: New evidence from oil-importing OECD economies," Energy Economics, Elsevier, vol. 130(C).
    5. Benk, Szilard & Gillman, Max, 2023. "Identifying money and inflation expectation shocks to real oil prices," Energy Economics, Elsevier, vol. 126(C).
    6. Kilian, Lutz & Zhou, Xiaoqing, 2023. "A broader perspective on the inflationary effects of energy price shocks," Energy Economics, Elsevier, vol. 125(C).
    7. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Casoli, Chiara & Manera, Matteo & Valenti, Daniele, 2024. "Energy shocks in the Euro area: Disentangling the pass-through from oil and gas prices to inflation," Journal of International Money and Finance, Elsevier, vol. 147(C).
    9. Cao, Fangzhi & Su, Chi-Wei & Sun, Dian & Qin, Meng & Umar, Muhammad, 2024. "U.S. monetary policy: The pushing hands of crude oil price?," Energy Economics, Elsevier, vol. 134(C).
    10. Ahn, Hie Joo & Xie, Shihan & Yang, Choongryul, 2024. "Effects of monetary policy on household expectations: The role of homeownership," Journal of Monetary Economics, Elsevier, vol. 147(C).
    11. Felix Kapfhammer, 2023. "The Economic Consequences of Effective Carbon Taxes," Working Papers No 01/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    12. Costin Radu Boldea & Bogdan Ion Boldea & Tiberiu Iancu, 2023. "The Pandemic Waves’ Impact on the Crude Oil Price and the Rise of Consumer Price Index: Case Study for Six European Countries," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    13. Mirza, Nawazish & Naqvi, Bushra & Rizvi, Syed Kumail Abbas & Boubaker, Sabri, 2023. "Exchange rate pass-through and inflation targeting regime under energy price shocks," Energy Economics, Elsevier, vol. 124(C).
    14. Li, Qianwen & Leng, Yunhan & Yao, Handong & Pei, Mingyang, 2024. "Assessment of transit bus electricity consumption using a random parameters approach," Energy, Elsevier, vol. 307(C).
    15. Ricciutelli, Francesco, 2024. "Energy Inflation and Consumption Inequality," MPRA Paper 120899, University Library of Munich, Germany.
    16. Grzegorz Przekota & Anna Szczepańska-Przekota, 2022. "Pro-Inflationary Impact of the Oil Market—A Study for Poland," Energies, MDPI, vol. 15(9), pages 1-19, April.
    17. An, Zidong & Sheng, Xuguang Simon & Zheng, Xinye, 2023. "What is the role of perceived oil price shocks in inflation expectations?," Energy Economics, Elsevier, vol. 126(C).
    18. Batten, Jonathan A. & Mo, Di & Pourkhanali, Armin, 2024. "Can inflation predict energy price volatility?," Energy Economics, Elsevier, vol. 129(C).
    19. Yoosoon Chang & Ana María Herrera & Elena Pesavento, 2023. "Oil prices uncertainty, endogenous regime switching, and inflation anchoring," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 820-839, September.
    20. Zheng, Tingguo & Gong, Lu & Ye, Shiqi, 2023. "Global energy market connectedness and inflation at risk," Energy Economics, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7266-:d:1267793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.