IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7101-d1260204.html
   My bibliography  Save this article

Research on Reactive Power Optimization Based on Hybrid Osprey Optimization Algorithm

Author

Listed:
  • Yi Zhang

    (College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China
    Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China)

  • Pengtao Liu

    (College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China
    Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China)

Abstract

This paper presents an improved osprey optimization algorithm (IOOA) to solve the problems of slow convergence and local optimality. First, the osprey population is initialized based on the Sobol sequence to increase the initial population’s diversity. Second, the step factor, based on Weibull distribution, is introduced in the osprey position updating process to balance the explorative and developmental ability of the algorithm. Lastly, a disturbance based on the Firefly Algorithm is introduced to adjust the position of the osprey to enhance its ability to jump out of the local optimal. By mixing three improvement strategies, the performance of the original algorithm has been comprehensively improved. We compared multiple algorithms on a suite of CEC2017 test functions and performed Wilcoxon statistical tests to verify the validity of the proposed IOOA method. The experimental results show that the proposed IOOA has a faster convergence speed, a more robust ability to jump out of the local optimal, and higher robustness. In addition, we also applied IOOA to the reactive power optimization problem of IEEE33 and IEEE69 node, and the active power network loss was reduced by 48.7% and 42.1%, after IOOA optimization, respectively, which verifies the feasibility and effectiveness of IOOA in solving practical problems.

Suggested Citation

  • Yi Zhang & Pengtao Liu, 2023. "Research on Reactive Power Optimization Based on Hybrid Osprey Optimization Algorithm," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7101-:d:1260204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Zhou, Lili & Huang, Yuan & Zhang, Xin & Liu, Youbo & Liu, Junyong, 2021. "Reactive coordinated optimal operation of distributed wind generation," Energy, Elsevier, vol. 218(C).
    2. Li, Maodong & Xu, Guanghui & Lai, Qiang & Chen, Jie, 2022. "A chaotic strategy-based quadratic Opposition-Based Learning adaptive variable-speed whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 71-99.
    3. Minsheng Yang & Jianqi Li & Rui Du & Jianying Li & Jian Sun & Xiaofang Yuan & Jiazhu Xu & Shifu Huang, 2022. "Reactive Power Optimization Model for Distribution Networks Based on the Second-Order Cone and Interval Optimization," Energies, MDPI, vol. 15(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    2. Ziying Liang & Ting Shu & Zuohua Ding, 2024. "A Novel Improved Whale Optimization Algorithm for Global Optimization and Engineering Applications," Mathematics, MDPI, vol. 12(5), pages 1-43, February.
    3. Masood, Nahid-Al- & Mahmud, Sajjad Uddin & Ansary, Md Nazmuddoha & Deeba, Shohana Rahman, 2022. "Improvement of system strength under high wind penetration: A techno-economic assessment using synchronous condenser and SVC," Energy, Elsevier, vol. 246(C).
    4. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    5. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7101-:d:1260204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.