IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6867-d1250214.html
   My bibliography  Save this article

A Deep GMDH Neural-Network-Based Robust Fault Detection Method for Active Distribution Networks

Author

Listed:
  • Özgür Çelik

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark
    Department of Energy Systems Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye)

  • Jalal Sahebkar Farkhani

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Abderezak Lashab

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Josep M. Guerrero

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Juan C. Vasquez

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Zhe Chen

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Claus Leth Bak

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

The increasing penetration of distributed generation (DG) to power distribution networks mainly induces weaknesses in the sensitivity and selectivity of protection systems. In this manner, conventional protection systems often fail to protect active distribution networks (ADN) in the case of short-circuit faults. To overcome these challenges, the accurate detection of faults in a reasonable fraction of time appears as a critical issue in distribution networks. Machine learning techniques are capable of generating efficient analytical expressions that can be strong candidates in terms of reliable and robust fault detection for several operating scenarios of ADNs. This paper proposes a deep group method of data handling (GMDH) neural network based on a non-pilot protection method for the protection of an ADN. The developed method is independent of the DG capacity and achieves accurate fault detection under load variations, disturbances, and different high-impedance faults (HIFs). To verify the improvements, a test system based on a real distribution network that includes three generators with a capacity of 6 MW is utilized. The extensive simulations of the power network are performed using DIgSILENT Power Factory and MATLAB software. The obtained results reveal that a mean absolute percentage error (MAPE) of 3.51% for the GMDH-network-based protection system is accomplished thanks to formulation via optimized algorithms, without requiring the utilization of any feature selection techniques. The proposed method has a high-speed operation of around 20 ms for the detection of faults, while the conventional OC relay performance is in the blinding mode in the worst situations for faults with HIFs.

Suggested Citation

  • Özgür Çelik & Jalal Sahebkar Farkhani & Abderezak Lashab & Josep M. Guerrero & Juan C. Vasquez & Zhe Chen & Claus Leth Bak, 2023. "A Deep GMDH Neural-Network-Based Robust Fault Detection Method for Active Distribution Networks," Energies, MDPI, vol. 16(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6867-:d:1250214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
    2. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli & Marco Pasetti & Raul Igual, 2021. "Advances in the Application of Machine Learning Techniques for Power System Analytics: A Survey," Energies, MDPI, vol. 14(16), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    2. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.
    4. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    6. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    7. Jaroslaw Krzywanski, 2022. "Advanced AI Applications in Energy and Environmental Engineering Systems," Energies, MDPI, vol. 15(15), pages 1-3, August.
    8. Krzysztof Lalik & Filip Wątorek, 2021. "Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles," Energies, MDPI, vol. 14(22), pages 1-18, November.
    9. Deyslen Mariano-Hernández & Luis Hernández-Callejo & Martín Solís & Angel Zorita-Lamadrid & Oscar Duque-Pérez & Luis Gonzalez-Morales & Felix Santos García & Alvaro Jaramillo-Duque & Adalberto Ospino-, 2022. "Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    10. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    11. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method," Energies, MDPI, vol. 16(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6867-:d:1250214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.