IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6834-d1248501.html
   My bibliography  Save this article

Experimental Study on Flame Response Characteristics of a Non-Premixed Swirl Model Combustor

Author

Listed:
  • Chen Yang

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yong Liu

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xiang Zhang

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Hao Li

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xinkun Ge

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Feng Jin

    (Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Chongyang Liu

    (Sichuan Gas Turbine Establishment, Aero Engine Corporation of China, Mianyang 621000, China)

Abstract

Non-premixed swirl combustion has been widely used in pieces of industrial combustion equipment such as industrial boilers, furnaces, and certain specific gas turbine combustors. In recent years, the combustion instability of non-premixed swirl flames has begun receiving attention, yet there is still a lack of related research in academia. Therefore, in this study, we conducted experimental research on a swirl stabilized gas flame model combustor and studied the heat release response characteristics of the swirl combustor through the flame transfer function. Firstly, the flame transfer function (FTF) was measured under different inlet velocities and equivalence ratios, and the experimental results showed that the FTF gain curve of the non-premixed swirl flame exhibited a significant “bimodal” shape, with the gain peaks located around 230 Hz and 330 Hz, respectively. Secondly, two oscillation modes of the flame near the two gain peaks were identified (the acoustic induced vortex mode M v and the thermoacoustic oscillation mode M a ), which have not been reported in previous studies on swirl non-premixed flames. In addition, we comprehensively analyzed the flame pulsation characteristics under the two oscillation modes. Finally, the coupling degrees between velocity fluctuations, fuel pressure fluctuations, and heat release fluctuations were analyzed using the Rayleigh Index (RI), and it was found that in the acoustic-induced vortex mode, a complete feedback loop was not formed between the combustor and the fuel pipeline, which was the main reason for the significant difference in the pressure fluctuation amplitude near 230 Hz and 330 Hz.

Suggested Citation

  • Chen Yang & Yong Liu & Xiang Zhang & Hao Li & Xinkun Ge & Feng Jin & Chongyang Liu, 2023. "Experimental Study on Flame Response Characteristics of a Non-Premixed Swirl Model Combustor," Energies, MDPI, vol. 16(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6834-:d:1248501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Rongjun & Pan, Deng & Ji, Chenzhen & Zhu, Tong & Lu, Pengpeng & Gao, Han, 2020. "Combustion instability analysis on a partially premixed swirl combustor by thermoacoustic experiments and modeling," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).
    2. Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).
    3. Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
    4. Yunpeng Liu & Yingwen Yan & Shoutang Shang & Hongyu Ma, 2023. "Acoustic Triggering of Combustion Instability in a Swirling Flame: An Experimental Study," Energies, MDPI, vol. 16(14), pages 1-20, July.
    5. Fan, Gaofeng & Chen, Meijing & Wang, Chang’an & Feng, Qinqin & Sun, Yunlei & Xu, Jie & Du, Yongbo & Che, Defu, 2024. "Numerical study on oxy-fuel combustion characteristics of industrial furnace firing coking dry gas," Energy, Elsevier, vol. 286(C).
    6. Jiangang Hao & Yang Ding & Chen Yang & Xuhuai Wang & Xiang Zhang & Yong Liu & Feng Jin, 2022. "Study on Unstable Combustion Characteristics of Model Combustor with Different Swirler Schemes," Energies, MDPI, vol. 15(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6834-:d:1248501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.