IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6528-d1237149.html
   My bibliography  Save this article

Selection of the Winding Type of Solid-State Transformers in Terms of Transmitting the Greatest Possible Power in the Frequency Range from 500 Hz to 6000 Hz

Author

Listed:
  • Elzbieta Lesniewska

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Daniel Roger

    (LSEE ER4025, University of Artois, 62400 BĂ©thune, France)

Abstract

Solid-state transformer (SST) is an emerging technology that integrates with transformer power electronics converters and control. The most noticeable advantages of SST are the size and weight reduction compared with low-frequency transformers. Since this device is used in many devices such as smart grids, traction systems, systems with renewable energy sources (RESs) and electric vehicle charging devices, it is important to build a high-efficiency device at a low cost. The article evaluates a medium frequency transformer (SST) operating at a frequency of 500 Hz to 6000 Hz with coils wound with aluminum foil or Litz windings and of a grain-oriented electrical steel (GOES) core. The calculations were made using the 3D field method using the numerical finite element method, and the results were compared with the tests of the real model. The measurement method based on the Fourier analysis of real signals was used for the research.

Suggested Citation

  • Elzbieta Lesniewska & Daniel Roger, 2023. "Selection of the Winding Type of Solid-State Transformers in Terms of Transmitting the Greatest Possible Power in the Frequency Range from 500 Hz to 6000 Hz," Energies, MDPI, vol. 16(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6528-:d:1237149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Dems & Krzysztof Komeza & Witold Kubiak & Jacek Szulakowski, 2020. "Impact of Core Sheet Cutting Method on Parameters of Induction Motors," Energies, MDPI, vol. 13(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osaruyi Osemwinyen & Ahmed Hemeida & Floran Martin & Anouar Belahcen & Antero Arkkio, 2020. "Parameter Estimation of Inter-Laminar Fault-Region in Laminated Sheets Through Inverse Approach," Energies, MDPI, vol. 13(12), pages 1-10, June.
    2. Elzbieta Lesniewska & Michal Kaczmarek & Ernest Stano, 2020. "3D Electromagnetic Field Analysis Applied to Evaluate the Accuracy of a Voltage Transformer under Distorted Voltage," Energies, MDPI, vol. 14(1), pages 1-16, December.
    3. Maria Dems & Zbigniew Gmyrek & Krzysztof Komeza, 2021. "Analytical Model of an Induction Motor Taking into Account the Punching Process Influence on the Material Properties’ Change of Lamination," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6528-:d:1237149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.