Author
Listed:
- Cong Ji
(School of Energy and Environment, Southeast University, Nanjing 210096, China)
- Fan Gu
(School of Energy and Environment, Southeast University, Nanjing 210096, China)
Abstract
In this paper, the influence of thermionic emission on He ionization and plasma enhancement in thermionic energy conversion (TEC) are studied by experiment and numerical simulation. A 1D unsteady plasma TEC model, which includes a He ionization model, plasma conservation equations, and a thermionic emission formula for the wall, is developed. A He plasma thermionic energy conversion device composed of a barium–tungsten cathode and a tungsten anode is established. The volt–ampere curves of the He plasma TEC device are measured at 1050 K, 1150 K, 1250 K, 1300 K, and 1350 K temperatures. Both important cathode parameters, work function and emission area, are estimated. Based on the modelling simulation and the experiment, the He ionization mechanism in plasma TEC is discovered. The effects of cathode temperature on several distributions of plasma reaction rates, particle number density, and potential in He plasma TEC are described. Some important parameters, including electron mobility, resistivity, and plasma equilibrium are analyzed. The relationship of thermionic emission on plasma enhancement to the output power of plasma TEC is presented. The output powers of plasma TEC and vacuum TEC are compared at various cathode temperatures. A dimensionless analyzing method concerning thermionic emission intensity and plasma enhancement power is proposed. A brief dimensionless relationship is deduced regarding thermionic emission intensity and the plasma enhancement contribution of TEC. The principles and methods for quantitative calculations concerning the output power of plasma TEC under the action of thermionic emission are established. It is possible to do quantitative research on the effects of thermionic emission on plasma-enhanced TEC.
Suggested Citation
Cong Ji & Fan Gu, 2023.
"Influence of Thermionic Emission on He Ionization and Plasma Enhancement in Thermionic Energy Conversion,"
Energies, MDPI, vol. 16(18), pages 1-20, September.
Handle:
RePEc:gam:jeners:v:16:y:2023:i:18:p:6435-:d:1233641
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6435-:d:1233641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.