IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6355-d1231333.html
   My bibliography  Save this article

Computation of High-Order Sensitivities of Model Responses to Model Parameters—I: Underlying Motivation and Current Methods

Author

Listed:
  • Dan Gabriel Cacuci

    (Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC 29208, USA)

Abstract

The mathematical/computational model of a physical system comprises parameters and independent and dependent variables. Since the physical system is seldom known precisely and since the model’s parameters stem from experimental procedures that are also subject to uncertainties, the results predicted by a computational model are imperfect. Quantifying the reliability and accuracy of results produced by a model (called “model responses”) requires the availability of sensitivities (i.e., functional partial derivatives) of model responses with respect to model parameters. This work reviews the basic motivations for computing high-order sensitivities and illustrates their importance by means of an OECD/NEA reactor physics benchmark, which is representative of a “large-scale system” involving many (21,976) uncertain parameters. The computation of higher-order sensitivities by conventional methods (finite differences and/or statistical procedures) is subject to the “curse of dimensionality”. Furthermore, as will be illustrated in this work, the accuracy of high-order sensitivities computed using such conventional methods cannot be a priori guaranteed. High-order sensitivities can be computed accurately and efficiently solely by applying the high-order adjoint sensitivity analysis methodology. The principles underlying this adjoint methodology are also reviewed in preparation for introducing, in the accompanying Part II, the “High-Order Function/Feature Adjoint Sensitivity Analysis Methodology” (nth-FASAM), which aims at most efficiently computing exact expressions of high-order sensitivities of model responses to functions (“features”) of model parameters.

Suggested Citation

  • Dan Gabriel Cacuci, 2023. "Computation of High-Order Sensitivities of Model Responses to Model Parameters—I: Underlying Motivation and Current Methods," Energies, MDPI, vol. 16(17), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6355-:d:1231333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): I. Mathematical Framework," Energies, MDPI, vol. 14(24), pages 1-42, December.
    2. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): II. Illustrative Application," Energies, MDPI, vol. 14(24), pages 1-49, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Gabriel Cacuci, 2022. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-7, September.
    2. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): II. Illustrative Application," Energies, MDPI, vol. 14(24), pages 1-49, December.
    3. Dan Gabriel Cacuci, 2022. "Advances in High-Order Sensitivity Analysis for Uncertainty Quantification and Reduction in Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-6, September.
    4. Dan Gabriel Cacuci, 2022. "Overview of Arbitrarily High-Order Adjoint Sensitivity and Uncertainty Quantification Methodology for Large-Scale Systems," Energies, MDPI, vol. 15(18), pages 1-44, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6355-:d:1231333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.