IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6264-d1227464.html
   My bibliography  Save this article

Determination of Heat Transfer Correlations for Fluids Flowing through Plate Heat Exchangers Needed for Online Monitoring of District Heat Exchanger Fouling

Author

Listed:
  • Tomasz Romanowicz

    (Department of Energy, Cracow University of Technology, 31-155 Cracow, Poland)

  • Jan Taler

    (Department of Energy, Cracow University of Technology, 31-155 Cracow, Poland)

  • Magdalena Jaremkiewicz

    (Department of Thermal Processes, Air Protection, and Waste Utilisation, Cracow University of Technology, 31-155 Cracow, Poland)

  • Tomasz Sobota

    (Department of Thermal Processes, Air Protection, and Waste Utilisation, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

This article deals with the problem of estimating the degree of fouling of plate heat exchangers (PHEs) used in district heating substations (where the working medium is water). A method for calculating the thermal resistance of fouling is proposed based on a comparison of the thermal resistance of a fouled and clean heat exchanger. The thermal resistance of the heat exchanger for both fouled and clean apparatuses is determined as the inverse of their overall heat transfer coefficient. In the method, the heat transfer coefficients necessary to determine the overall heat transfer coefficient of the clean exchanger are calculated using a modified Wilson method. Moreover, the heat transfer coefficients on the clean heat exchanger plates’ cold water side are determined based on experimental tests. The computational algorithm presented in this paper will make it possible to develop software to monitor and thus optimise the operation of district heating substations.

Suggested Citation

  • Tomasz Romanowicz & Jan Taler & Magdalena Jaremkiewicz & Tomasz Sobota, 2023. "Determination of Heat Transfer Correlations for Fluids Flowing through Plate Heat Exchangers Needed for Online Monitoring of District Heat Exchanger Fouling," Energies, MDPI, vol. 16(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6264-:d:1227464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Janusz Teleszewski & Leszek Hożejowski, 2024. "Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant," Sustainability, MDPI, vol. 16(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Estupiñán-Campos & William Quitiaquez & César Nieto-Londoño & Patricio Quitiaquez, 2024. "Numerical Simulation of the Heat Transfer Inside a Shell and Tube Heat Exchanger Considering Different Variations in the Geometric Parameters of the Design," Energies, MDPI, vol. 17(3), pages 1-17, January.
    2. Reza Afsahnoudeh & Andreas Wortmeier & Maik Holzmüller & Yi Gong & Werner Homberg & Eugeny Y. Kenig, 2023. "Thermo-Hydraulic Performance of Pillow-Plate Heat Exchangers with Secondary Structuring: A Numerical Analysis," Energies, MDPI, vol. 16(21), pages 1-14, October.
    3. Vladimir Lebedev & Andrey Deev & Konstantin Deev, 2024. "Method for Calculating Heat Transfer in a Heat Accumulator Using a Phase Change Material with Intensification Due to Longitudinal Fins," Energies, MDPI, vol. 17(21), pages 1-41, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6264-:d:1227464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.