IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5906-d1214093.html
   My bibliography  Save this article

Optimizing Hybrid Microgrid Power Systems for Local Power Distribution: A Study on Combined Photovoltaic and Fuel Cell Systems in the Philippines

Author

Listed:
  • Godfrey Anthony T. Rivadulla

    (Electrical Engineering Department, Technological Institute of the Philippines, Manila 1001, Philippines)

  • Gerard Francesco D. G. Apolinario

    (Electrical Engineering Department, Technological Institute of the Philippines, Manila 1001, Philippines)

  • Michael C. Pacis

    (School of EECE, Mapua University, Manila 1002, Philippines)

Abstract

In pursuit of energy self-sufficiency and meeting the growing energy demand, the Philippine government has formulated its Energy Road Map for the year 2040, aiming to strengthen, continue, and accelerate the adoption of renewable energy (RE) across the archipelago. This paper presents a proposed multiple microgrid system integrated into an existing distribution system, utilizing renewable energy sources. The proposed model involves the conversion of a section of the distribution system into a microgrid setup, comprising photovoltaic (PV) energy and fuel cell (FC) technologies connected to a 13.2 kV distribution grid. A modified three-phase three-level voltage-sourced converter (VSC) is employed to control the inverter. The proposed modifications result in improved operational efficiency compared to conventional approaches. Various operating cases are considered, each with a designated power source operating according to a predefined schedule. A unified controller is employed across all operating cases, ensuring system stability. Simulation and experimental results conducted through MATLAB/Simulink demonstrate the impact of VSC in terms of voltage regulation, frequency stability, and accumulated power losses. They revealed that voltage regulation for understudy cases ranged from 0.1 to 4.5%, microgrid frequencies were between 59.1 and 60.08 Hz, and power distribution losses were at 1.2–3.3% of the generated power.

Suggested Citation

  • Godfrey Anthony T. Rivadulla & Gerard Francesco D. G. Apolinario & Michael C. Pacis, 2023. "Optimizing Hybrid Microgrid Power Systems for Local Power Distribution: A Study on Combined Photovoltaic and Fuel Cell Systems in the Philippines," Energies, MDPI, vol. 16(16), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5906-:d:1214093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quashie, Mike & Marnay, Chris & Bouffard, François & Joós, Géza, 2018. "Optimal planning of microgrid power and operating reserve capacity," Applied Energy, Elsevier, vol. 210(C), pages 1229-1236.
    2. Ozturk, Murat & Yuksel, Yunus Emre, 2016. "Energy structure of Turkey for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1259-1272.
    3. Jong-Bin Kim & Min-Gu Lee & Jung-Hun Lee & Je-Chang Ryu & Tae-Seong Choi & Min-Su Park & Jae-Eon Kim, 2022. "Control Method of Step Voltage Regulator on Distribution Lines with Distributed Generation," Energies, MDPI, vol. 15(24), pages 1-16, December.
    4. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    5. Iqbal, M.T., 2003. "Modeling and control of a wind fuel cell hybrid energy system," Renewable Energy, Elsevier, vol. 28(2), pages 223-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    2. Martin Vrlić & Daniel Ritzberger & Stefan Jakubek, 2021. "Model-Predictive-Control-Based Reference Governor for Fuel Cells in Automotive Application Compared with Performance from a Real Vehicle," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    4. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    5. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    6. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    7. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    8. Min-Gu Lee & Jong-Bin Kim & Kwang-Jae Park & Ju-Won Song & Ye-Jung Kim & Jae-Eon Kim, 2024. "Design of Step Voltage Regulator Based on IGBT," Energies, MDPI, vol. 17(3), pages 1-20, February.
    9. Pathapati, P.R. & Xue, X. & Tang, J., 2005. "A new dynamic model for predicting transient phenomena in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 30(1), pages 1-22.
    10. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    11. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Dongqing Sun & Fanzhi Wang & Nanxu Chen & Jing Chen, 2021. "The Impacts of Technology Shocks on Sustainable Development from the Perspective of Energy Structure—A DSGE Model Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    13. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    14. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    15. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    16. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    19. Hassan S Hayajneh & Maximiliano Lainfiesta Herrera & Xuewei Zhang, 2021. "Design of combined stationary and mobile battery energy storage systems," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-21, December.
    20. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5906-:d:1214093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.