IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5783-d1209904.html
   My bibliography  Save this article

Temperature Evaluation of a Building Facade with a Thin Plaster Layer under Various Degrees of Cloudiness

Author

Listed:
  • Elena V. Korkina

    (Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences, 21, Lokomotivny Proezd, Moscow 127238, Russia
    Department of Heat and Gas Supply and Ventilation, Moscow State University of Civil Engineering, 26, Yaroslavskoe shosse, Moscow 129337, Russia)

  • Ekaterina V. Gorbarenko

    (Research Institute of Building Physics, Russian Academy of Architecture and Construction Sciences, 21, Lokomotivny Proezd, Moscow 127238, Russia
    Faculty of Geography, Lomonosov Moscow State University, 1, Leninskie Gori, Moscow 119234, Russia)

  • Elena V. Voitovich

    (Department of Industrial and Civil Engineering, Moscow Polytechnic University, 38, Bolshaya Semyonovskaya St., Moscow 107023, Russia)

  • Matvey D. Tyulenev

    (Department of Heat and Gas Supply and Ventilation, Moscow State University of Civil Engineering, 26, Yaroslavskoe shosse, Moscow 129337, Russia)

  • Natalia I. Kozhukhova

    (Department of Material Science and Material Technology, Belgorod State Technological University Named after V.G. Shukhov, 46, Kostukov, Belgorod 308012, Russia)

Abstract

In this paper, we investigate the surface temperature of a wall with a facade heat-insulating composite system (FHIC), which has a thin plaster layer, taking into account solar radiation exposure at different degrees of cloudiness during the month. The object of study is a wall with FHIC, on the outer surface of which temperature sensors were mounted and measurements were taken. Air temperatures were also measured for one month of the warm period of the year. The coefficient of absorption of solar radiation by the surface of the facade is calculated based on the measurement of the spectral reflection coefficient. Measurements of direct and scattered solar radiation arriving on a horizontal surface were carried out, and the cloudiness of the sky was also recorded. The calculation of direct and scattered solar radiation was carried out, taking into account the shading of surrounding buildings using the authors’ novel methods. The experimental days were divided into three groups according to the degree of cloudiness; statistically significant differences between the groups for the studied parameters were demonstrated. The temperature of the outer surface of the wall was calculated according to A.M. Shklover’s formula. The measured values of the temperature of the outer surface of the wall were compared with the calculated ones. It was shown that there is a good correlation between the measured and calculated temperatures for different degrees of cloudiness. At the same time, for days with no or slight cloudiness (Group I), when direct solar radiation predominates, the differences reach 1.7 °C; smaller differences are observed for days with average cloudiness (Group II) during daytime hours, with a maximum difference of 0.5 °C; and on days with continuous cloudiness (Group III), when only scattered radiation is present for daytime hours, the maximum difference is 0.3 °C. Statistically significant differences were found between the measured and calculated temperatures for groups of days, divided by the degree of cloudiness, for the experimental period of a day from 10 a.m. to 5 p.m., which indicates the possibility of considering amendments to A.M. Shklover’s formula for sunny days. The results of comparing the measured and calculated heating temperatures of the facade surface also indirectly confirm the correctness of the author’s calculations of the incoming solar radiation, taking into account the effect of the surrounding buildings. The results obtained can be used to study the inertia and durability of building structures under solar radiation.

Suggested Citation

  • Elena V. Korkina & Ekaterina V. Gorbarenko & Elena V. Voitovich & Matvey D. Tyulenev & Natalia I. Kozhukhova, 2023. "Temperature Evaluation of a Building Facade with a Thin Plaster Layer under Various Degrees of Cloudiness," Energies, MDPI, vol. 16(15), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5783-:d:1209904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slawomir Rabczak & Krzysztof Nowak, 2024. "Evaluating the Efficiency of Surface-Based Air Heating Systems," Energies, MDPI, vol. 17(5), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radosław Winiczenko & Krzysztof Górnicki & Agnieszka Kaleta & Monika Janaszek-Mańkowska & Aneta Choińska & Jędrzej Trajer, 2018. "Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    2. Yanqiu Cui & Ninghan Sun & Hongbin Cai & Simeng Li, 2020. "Indoor Temperature Improvement and Energy-Saving Renovations in Rural Houses of China’s Cold Region—A Case Study of Shandong Province," Energies, MDPI, vol. 13(4), pages 1-26, February.
    3. Ling Dong & Hailong Zhou & Hongxian Li & Fei Liu & Hong Zhang & Mohamed Al-Hussein, 2018. "Climate Chamber Experiment-Based Thermal Analysis and Design Improvement of Traditional Huizhou Masonry Walls," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    4. Binghui Si & Zhichao Tian & Wenqiang Chen & Xing Jin & Xin Zhou & Xing Shi, 2018. "Performance Assessment of Algorithms for Building Energy Optimization Problems with Different Properties," Sustainability, MDPI, vol. 11(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5783-:d:1209904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.