IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5460-d1196740.html
   My bibliography  Save this article

Double-Layer SOC and SOH Equalization Scheme for LiFePO 4 Battery Energy Storage System Using MAS Blackboard System

Author

Listed:
  • Zhongda Lu

    (School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161000, China)

  • Qilong Wang

    (School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161000, China)

  • Fengxia Xu

    (School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161000, China)

  • Mingqing Fan

    (School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161000, China)

  • Chuanshui Peng

    (Qiqihar Sida Railway Equipment Co., Ltd., Qiqihar 161006, China)

  • Shiwei Yan

    (Qiqihar Sida Railway Equipment Co., Ltd., Qiqihar 161006, China)

Abstract

26650 LiFePO 4 battery, as an ideal energy storage battery for the smart grid system, has the shortcomings of fast aging speed and large dispersion of aging trend, which is the reason for accelerating the 26650 battery system aging. However, it is noted that the 26650 LiFePO 4 battery with high aging trend dispersion shows the characteristics of grouping. Therefore, to prolong the 26650 battery system life, this paper proposes a state-of-charge (SOC) and state-of-health (SOH) double-layer equalization scheme for 26650 LiFePO 4 batteries based on a multi-agent blackboard system (MABS) that utilizes these characteristics. Based on MABS, the battery units with similar SOH are clustered into a group by a hierarchical-clustering algorithm. Then, SOH balancing is performed by changing the depth of charge and discharge (DOD) between groups, and SOC balancing is performed within the group. MATLAB simulation results verify the effectiveness of the proposed scheme in ensuring the balance of battery charge and discharge and prolonging the life of the battery energy storage system (BESS).

Suggested Citation

  • Zhongda Lu & Qilong Wang & Fengxia Xu & Mingqing Fan & Chuanshui Peng & Shiwei Yan, 2023. "Double-Layer SOC and SOH Equalization Scheme for LiFePO 4 Battery Energy Storage System Using MAS Blackboard System," Energies, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5460-:d:1196740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Yu Wen & Kittner, Noah & Kammen, Daniel M., 2019. "ASEAN grid flexibility: Preparedness for grid integration of renewable energy," Energy Policy, Elsevier, vol. 128(C), pages 711-726.
    2. Carla Menale & Stefano Constà & Vincenzo Sglavo & Livia Della Seta & Roberto Bubbico, 2022. "Experimental Investigation of Overdischarge Effects on Commercial Li-Ion Cells," Energies, MDPI, vol. 15(22), pages 1-16, November.
    3. Seal, Sayani & Boulet, Benoit & Dehkordi, Vahid R., 2020. "Centralized model predictive control strategy for thermal comfort and residential energy management," Energy, Elsevier, vol. 212(C).
    4. Radhakrishnan, Bharat Menon & Srinivasan, Dipti, 2016. "A multi-agent based distributed energy management scheme for smart grid applications," Energy, Elsevier, vol. 103(C), pages 192-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sercan Yalçın & Münür Sacit Herdem, 2024. "Optimizing EV Battery Management: Advanced Hybrid Reinforcement Learning Models for Efficient Charging and Discharging," Energies, MDPI, vol. 17(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    2. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    4. Wei Chen & Yongle Tian & Kaiming Zheng & Nana Wan, 2023. "Influences of mechanisms on investment in renewable energy storage equipment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12569-12595, November.
    5. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    6. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    7. Hou, Juan & Li, Haoran & Nord, Natasa, 2022. "Nonlinear model predictive control for the space heating system of a university building in Norway," Energy, Elsevier, vol. 253(C).
    8. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    9. Mensah, Theophilus Nii Odai & Oyewo, Ayobami Solomon & Breyer, Christian, 2021. "The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana," Renewable Energy, Elsevier, vol. 173(C), pages 297-317.
    10. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    11. Khairul Eahsun Fahim & Liyanage C. De Silva & Fayaz Hussain & Sk. A. Shezan & Hayati Yassin, 2023. "An Evaluation of ASEAN Renewable Energy Path to Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    12. Diaz-Rainey, Ivan & Tulloch, Daniel J. & Ahmed, Iftekhar & McCarten, Matthew & Taghizadeh-Hesary, Farhad, 2021. "An Energy Policy for ASEAN? Lessons from the EU Experience on Energy Integration, Security, and Decarbonization," ADBI Working Papers 1217, Asian Development Bank Institute.
    13. Yang, Chao & Liu, Kaijia & Jiao, Xiaohong & Wang, Weida & Chen, Ruihu & You, Sixiong, 2022. "An adaptive firework algorithm optimization-based intelligent energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 239(PB).
    14. Bünning, Felix & Sangi, Roozbeh & Müller, Dirk, 2017. "A Modelica library for the agent-based control of building energy systems," Applied Energy, Elsevier, vol. 193(C), pages 52-59.
    15. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    16. Reis, Inês F.G. & Gonçalves, Ivo & Lopes, Marta A.R. & Antunes, Carlos Henggeler, 2020. "A multi-agent system approach to exploit demand-side flexibility in an energy community," Utilities Policy, Elsevier, vol. 67(C).
    17. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    18. Shi, Xunpeng & Yao, Lixia, 2020. "Economic Integration in Southeast Asia: The Case of the ASEAN Power Grid," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 35(1), pages 152-171.
    19. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    20. Mu, Yunfei & Xu, Yanze & Zhang, Jiarui & Wu, Zeqing & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2023. "A data-driven rolling optimization control approach for building energy systems that integrate virtual energy storage systems," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5460-:d:1196740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.