IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5430-d1195927.html
   My bibliography  Save this article

AC Distributed Winding with Low Higher Spatial Harmonics Content in Mmf Distribution

Author

Listed:
  • Jan Staszak

    (Department of Electrical Power Engineering, Power Electronics and Electrical Machines, Kielce University of Technology, Al. 1000-lecia P.P. 7, 25-314 Kielce, Poland)

Abstract

This paper presents a new winding with a low higher spatial harmonics content. This winding enables the elimination of the fifth harmonic, as the most significant, in three-phase winding and the third harmonic in two-phase symmetrical winding. The suppression of higher spatial harmonics is particularly evident with the number of slots per pole per phase q s = 2. The winding factors for the higher spatial harmonics of the order ν = 6 k ± 1 in the case of three-phase winding, and ν = 4 k ± 1 in the case of two-phase winding, for k = 1, 3, 5, …, will be equal to zero. A two-phase measurement winding, with the number of slots per pole per phase q s = 1, was used to evaluate the higher spatial harmonics content in the magnetic field in the air gap of the machine. Experimental verification of the designed winding was carried out.

Suggested Citation

  • Jan Staszak, 2023. "AC Distributed Winding with Low Higher Spatial Harmonics Content in Mmf Distribution," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5430-:d:1195927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keyi Wang & Heyun Lin, 2020. "Modular Permanent Magnet Synchronous Machine with Low Space Harmonic Content," Energies, MDPI, vol. 13(15), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    2. Zhimeng Rao & Wenjuan Zhang & Gongping Wu & Jian Zheng & Shoudao Huang, 2020. "Characteristic Analysis and Predictive Torque Control of the Modular Three-Phase PMSM for Low-Voltage High Power Application," Energies, MDPI, vol. 13(21), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5430-:d:1195927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.