IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4960-d1179764.html
   My bibliography  Save this article

Energy Efficiency and Optimization Strategies in a Building to Minimize Airborne Infection Risks

Author

Listed:
  • Nasim Samadi

    (Mechanical Engineering Department, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Mahdi Shahbakhti

    (Mechanical Engineering Department, University of Alberta, Edmonton, AB T6G 2R3, Canada)

Abstract

Heating, ventilation, and air conditioning (HVAC) systems play a crucial role in either increasing or decreasing the risk of airborne disease transmission. High ventilation, for instance, is a common method used to control and reduce the infection risk of airborne diseases such as COVID-19. On the other hand, high ventilation will increase energy consumption and cost. This paper proposes an optimal HVAC controller to assess the trade-off between energy consumption and indoor infection risk of COVID-19. To achieve this goal, a nonlinear model predictive controller (NMPC) is designed to control the HVAC systems of a university building to minimize the risk of COVID-19 transmission while reducing building energy consumption. The NMPC controller uses dynamic models to predict future outputs while meeting system constraints. To this end, a set of dynamic physics-based models are created to capture heat transfer and conservation of mass, which are used in the NMPC controller. Then, the developed models are experimentally validated by conducting experiments in the ETLC building at the University of Alberta, Canada. A classroom in the building is equipped with a number of sensors to measure indoor and outdoor environmental parameters such as temperature, relative humidity, and CO 2 concentration. The validation results show that the model can predict room temperature and CO 2 concentration by 0.8%, and 2.4% mean absolute average errors, respectively. Based on the validated models, the NMPC controller is designed to calculate the optimal airflow and supply air temperature for every 15 min. The results for real case studies show that the NMPC controller can reduce the infection risk of COVID-19 transmission below 1% while reducing energy consumption by 55% when compared to the existing building controller.

Suggested Citation

  • Nasim Samadi & Mahdi Shahbakhti, 2023. "Energy Efficiency and Optimization Strategies in a Building to Minimize Airborne Infection Risks," Energies, MDPI, vol. 16(13), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4960-:d:1179764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stuart Batterman, 2017. "Review and Extension of CO 2 -Based Methods to Determine Ventilation Rates with Application to School Classrooms," IJERPH, MDPI, vol. 14(2), pages 1-22, February.
    2. Armin Norouzi & Hamed Heidarifar & Mahdi Shahbakhti & Charles Robert Koch & Hoseinali Borhan, 2021. "Model Predictive Control of Internal Combustion Engines: A Review and Future Directions," Energies, MDPI, vol. 14(19), pages 1-40, October.
    3. Hou, Juan & Li, Haoran & Nord, Natasa, 2022. "Nonlinear model predictive control for the space heating system of a university building in Norway," Energy, Elsevier, vol. 253(C).
    4. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    2. Diana D’Agostino & Martina Di Mascolo & Federico Minelli & Francesco Minichiello, 2024. "A New Tailored Approach to Calculate the Optimal Number of Outdoor Air Changes in School Building HVAC Systems in the Post-COVID-19 Era," Energies, MDPI, vol. 17(11), pages 1-36, June.
    3. Saeid Shahpouri & Armin Norouzi & Christopher Hayduk & Reza Rezaei & Mahdi Shahbakhti & Charles Robert Koch, 2021. "Hybrid Machine Learning Approaches and a Systematic Model Selection Process for Predicting Soot Emissions in Compression Ignition Engines," Energies, MDPI, vol. 14(23), pages 1-25, November.
    4. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    5. Enrique Cano-Suñén & Ignacio Martínez & Ángel Fernández & Belén Zalba & Roberto Casas, 2023. "Internet of Things (IoT) in Buildings: A Learning Factory," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    6. Richard Nagy & Ľudmila Mečiarová & Silvia Vilčeková & Eva Krídlová Burdová & Danica Košičanová, 2019. "Investigation of a Ventilation System for Energy Efficiency and Indoor Environmental Quality in a Renovated Historical Building: A Case Study," IJERPH, MDPI, vol. 16(21), pages 1-17, October.
    7. Roberto Finesso & Omar Marello, 2022. "Calculation of Intake Oxygen Concentration through Intake CO 2 Measurement and Evaluation of Its Effect on Nitrogen Oxide Prediction Accuracy in a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 15(1), pages 1-26, January.
    8. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    9. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    10. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    11. Brenner, Lorenz & Tillenkamp, Frank & Krütli, Markus & Ghiaus, Christian, 2020. "Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants," Applied Energy, Elsevier, vol. 259(C).
    12. Loris Ventura & Roberto Finesso & Stefano A. Malan, 2023. "Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm 3 Diesel Engine and Its Assessment through Model-in-the-Loop," Energies, MDPI, vol. 16(2), pages 1-23, January.
    13. Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
    14. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    15. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    16. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    17. Tunzi, Michele & Benakopoulos, Theofanis & Yang, Qinjiang & Svendsen, Svend, 2023. "Demand side digitalisation: A methodology using heat cost allocators and energy meters to secure low-temperature operations in existing buildings connected to district heating networks," Energy, Elsevier, vol. 264(C).
    18. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).
    19. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    20. Razmara, M. & Bharati, G.R. & Hanover, Drew & Shahbakhti, M. & Paudyal, S. & Robinett, R.D., 2017. "Building-to-grid predictive power flow control for demand response and demand flexibility programs," Applied Energy, Elsevier, vol. 203(C), pages 128-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4960-:d:1179764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.