IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4818-d1175105.html
   My bibliography  Save this article

Reducing CO 2 Emissions during the Operation of Unmanned Transport Vessels with Diesel Engines

Author

Listed:
  • Tadeusz Szelangiewicz

    (Faculty of Navigation, Maritime University of Szczecin, 70-500 Szczecin, Poland)

  • Katarzyna Żelazny

    (Faculty of Navigation, Maritime University of Szczecin, 70-500 Szczecin, Poland)

Abstract

Environmental protection is one of the most challenging tasks facing mankind. Reducing CO 2 emissions in the global economy, including maritime transport, is being pursued in various ways, one of them being the design work leading to the construction and operation of unmanned ships. Unmanned vessels operating on longer routes will still have internal combustion propulsion. However, they will not have the superstructure and the various systems and equipment necessary for the crew. This will result in an unmanned vessel having less weight, less displacement and, therefore, less size, resistance and propulsion power than a manned vessel for the same transport capacity. Consequently, the unmanned vessel will emit less CO 2 . This paper presents a novel method for predicting fuel consumption and CO 2 emissions for unmanned container ships. The method uses regression relationships of geometric and operational parameters for manned container ships developed for this purpose to determine such relationships for unmanned ships. On this basis, it is shown what the level of CO 2 reduction will be compared to manned container ships.

Suggested Citation

  • Tadeusz Szelangiewicz & Katarzyna Żelazny, 2023. "Reducing CO 2 Emissions during the Operation of Unmanned Transport Vessels with Diesel Engines," Energies, MDPI, vol. 16(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4818-:d:1175105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Cepowski & Paweł Chorab, 2021. "The Use of Artificial Neural Networks to Determine the Engine Power and Fuel Consumption of Modern Bulk Carriers, Tankers and Container Ships," Energies, MDPI, vol. 14(16), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianbo Zhou & Rui Zhang & Wenxiong Xi & Weidong Zhao, 2023. "Computational Analysis on Combustion Control of Diesel Engines Fueled with Ester Alcohol Diesel," Energies, MDPI, vol. 16(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armin Norouzi & Hamed Heidarifar & Mahdi Shahbakhti & Charles Robert Koch & Hoseinali Borhan, 2021. "Model Predictive Control of Internal Combustion Engines: A Review and Future Directions," Energies, MDPI, vol. 14(19), pages 1-40, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4818-:d:1175105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.