IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4460-d1161114.html
   My bibliography  Save this article

Analysis of the Gear Pump’s Acoustic Properties Taking into Account the Classification of Induction Trees

Author

Listed:
  • Piotr Osiński

    (Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 7/9 Łukasiewicza St., 50-370 Wrocław, Poland)

  • Adam Deptuła

    (Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland)

  • Anna M. Deptuła

    (Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland)

Abstract

This paper presents an analysis of selected acoustic properties of gear pumps. For this purpose, the characteristics of selected types of displacement pumps—gear pumps—are discussed, as well as discrete methods of identification and classification of acoustic signals. The basic assumptions of noise analysis in reverberation chambers are discussed, and an analysis of the distribution of measurement points using decision trees and statistical analysis of measured noise levels was conducted. The object for the conducted research was a gear pump with a undercut tooth profile developed by Wytwórnia Pomp Zębatych Sp. z o.o. in Wrocław. Our own research indicates that the acoustic performance of gear units depends on a number of factors, including, in particular, the technology and quality of manufacture and the geometric parameters of the toothing. The aim of the analyses presented in this paper was to determine which of the microphones has the most important impact on the level of determined measured noise generated in the acoustic chamber. The paper presents an analysis aimed at ranking the importance of eight measurement points in which the microphones are located. To this end, induction trees were developed, and a statistical analysis of the measurement results obtained for selected frequency and sound pressure ranges was prepared. The analysis made it possible to optimize the arrangement of microphones in the chamber without unnecessary analysis of each of the microphones separately.

Suggested Citation

  • Piotr Osiński & Adam Deptuła & Anna M. Deptuła, 2023. "Analysis of the Gear Pump’s Acoustic Properties Taking into Account the Classification of Induction Trees," Energies, MDPI, vol. 16(11), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4460-:d:1161114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Pigoli & Pantelis Z. Hadjipantelis & John S. Coleman & John A. D. Aston, 2018. "The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1103-1145, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T Masak & S Sarkar & V M Panaretos, 2023. "Separable expansions for covariance estimation via the partial inner product," Biometrika, Biometrika Trust, vol. 110(1), pages 225-247.
    2. Aranya Koshy & Shahin Tavakoli, 2022. "Exploring British accents: Modelling the trap–bath split with functional data analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 773-805, August.
    3. Pedro Galeano & Daniel Peña, 2019. "Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 289-329, June.
    4. Anthony Ebert & Kerrie Mengersen & Fabrizio Ruggeri & Paul Wu, 2021. "Curve Registration of Functional Data for Approximate Bayesian Computation," Stats, MDPI, vol. 4(3), pages 1-14, September.
    5. Soham Sarkar & Victor M. Panaretos, 2022. "CovNet: Covariance networks for functional data on multidimensional domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1785-1820, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4460-:d:1161114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.