IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4383-d1158278.html
   My bibliography  Save this article

Investigation of Different Rotational Speed Characteristics of Multistage Axial Compressor in CAES System

Author

Listed:
  • Pengfei Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhitao Zuo

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-Tech Industrial Development Zone, Bijie 551712, China)

  • Xin Zhou

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

  • Jingxin Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

  • Haisheng Chen

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-Tech Industrial Development Zone, Bijie 551712, China)

Abstract

An axial compressor has high efficiency under design conditions, but its stable working range is narrow. Adjusting the rotational speed can effectively expand the stable working range. In this paper, a five-stage axial compressor for a specific compressed air energy storage (CAES) system is taken as the research object, and different rotational speed (DRS) characteristics are studied with NUMECA software. Firstly, the influence of DRS on overall aerodynamic performance is explored, and the working flow range of the compressor is increased from 11.5% to 54.0%. Secondly, the effect of DRS on inlet parameters of the first stage rotor is analyzed, and the reasonable distribution of inlet parameters is obtained. Thirdly, the changing law of the internal flow is investigated at DRS. The corner separation is gradually enhanced when the rotational speed increases, and the leakage flow velocity at the rotor tip gradually improves. Finally, the loss distribution of tip clearance is researched. The result shows that the loss distribution increases significantly in both circumferential and spanwise directions when the speed increases. This work aims to provide a reference for the stable and efficient operation of axial compressors in CAES systems under the wide working range.

Suggested Citation

  • Pengfei Li & Zhitao Zuo & Xin Zhou & Jingxin Li & Haisheng Chen, 2023. "Investigation of Different Rotational Speed Characteristics of Multistage Axial Compressor in CAES System," Energies, MDPI, vol. 16(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4383-:d:1158278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dahui Yang & Xiankui Wen & Jingliang Zhong & Tingyong Feng & Tongtian Deng & Xiang Li, 2023. "Compressed Air Energy Storage System with Burner and Ejector," Energies, MDPI, vol. 16(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilya A. Lysak & Galina V. Lysak & Vladimir Yu. Konyukhov & Alena A. Stupina & Valeriy E. Gozbenko & Andrei S. Yamshchikov, 2023. "Efficiency Optimization of an Annular-Nozzle Air Ejector under the Influence of Structural and Operating Parameters," Mathematics, MDPI, vol. 11(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4383-:d:1158278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.