IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4114-d1147891.html
   My bibliography  Save this article

Study of Arc Interruption Characteristics under Rated Current in Low Voltage Circuit Breakers

Author

Listed:
  • Qian Wang

    (School of Sciences, Xi’an University of Technology, Xi’an 710048, China)

  • Shiwei Ge

    (Zhejiang Tengen Electric Co., Ltd., Yueqing 325604, China)

  • Weidong Cao

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Shanshan Yu

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zijie Liao

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The breaking capacity of rated current is one of the important indexes to evaluate the performance of circuit breakers, which is usually measured experimentally and cannot be analyzed in terms of the arcing characteristics of the opening process. Simulation methods based on the magnetohydrodynamic (MHD) model of the arc can be used to obtain the macroscopic motion of the arc within the interrupter and the interaction of the arc with the contacts, walls, and splitter plates. Therefore, this paper focuses on the arc interruption characteristics’ underrated current in low voltage circuit breakers by MHD simulation. A more accurate and effective field-circuit coupling MHD simulation model of low voltage circuit breaker products is developed in this paper. A nonlinear conductivity model of the sheath layer is considered to better simulate the near-pole voltage drop and bending processes after the arc has been cut by the splitter. The time-dependent magnetic field generated by the arc is considered in the calculation. Additionally, the real-time parameters of the external circuit are coupled to reflect the evolution of the arc characteristics under the action of the external circuit. The simulation results intuitively and clearly show the evolution of the arc during the breaking process. Through this, an arc extinguishing chamber can be designed to effectively regulate the arc interruption characteristics, thereby improving the breaking capacity of the circuit breaker. The accuracy and efficiency of the proposed simulation method is verified by experiments. This method can be extended to the performance analysis of AC/DC low voltage circuit breakers.

Suggested Citation

  • Qian Wang & Shiwei Ge & Weidong Cao & Shanshan Yu & Zijie Liao, 2023. "Study of Arc Interruption Characteristics under Rated Current in Low Voltage Circuit Breakers," Energies, MDPI, vol. 16(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4114-:d:1147891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eun Cheol Lee & Seung-Won Cha & Hee-Soo Kwon & Tae-Seong Roh & Hyoung Jin Lee, 2019. "A Numerical Study on the Characteristics of Air–Fuel Mixing Using a Fluidic Oscillator in Supersonic Flow Fields," Energies, MDPI, vol. 12(24), pages 1-19, December.
    2. Liaquat Ali Lund & Zurni Omar & Ilyas Khan & Seifedine Kadry & Seungmin Rho & Irshad Ali Mari & Kottakkaran Sooppy Nisar, 2019. "Effect of Viscous Dissipation in Heat Transfer of MHD Flow of Micropolar Fluid Partial Slip Conditions: Dual Solutions and Stability Analysis," Energies, MDPI, vol. 12(24), pages 1-17, December.
    3. Paweł Węgierek & Damian Kostyła & Michał Lech, 2023. "Directions of Development of Diagnostic Methods of Vacuum Medium-Voltage Switchgear," Energies, MDPI, vol. 16(5), pages 1-25, February.
    4. Ryan Anugrah Putra & Martin Neumann-Kipping & Thomas Schäfer & Dirk Lucas, 2019. "Comparison of Gas–Liquid Flow Characteristics in Geometrically Different Swirl Generating Devices," Energies, MDPI, vol. 12(24), pages 1-23, December.
    5. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Muhammad Shoaib Khan, 2023. "Computational and Stability Analysis of MHD Time-Dependent Thermal Reaction Flow Impinging on a Vertical Porous Plate Enclosing Magnetic Prandtl Number and Thermal Radiation Effect," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    6. Qihang Zhang & Qinli Deng & Xiaofang Shan & Xin Kang & Zhigang Ren, 2023. "Optimization of the Thermal Environment of Large-Scale Open Space with Subzone-Based Temperature Setting Using BEM and CFD Coupling Simulation," Energies, MDPI, vol. 16(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yimin You & Rui Qiao & Shaojie Li & Shunxiong Zhou & Shenjun Zhou & Zhenbo Peng, 2023. "Improved Design of Fuse Tube for Environmental Protection Cabinet Based on Electric-Field Simulation," Energies, MDPI, vol. 16(14), pages 1-20, July.
    2. Shabbir Ahmad & Kashif Ali & Sohail Ahmad & Jianchao Cai, 2021. "Numerical Study of Lorentz Force Interaction with Micro Structure in Channel Flow," Energies, MDPI, vol. 14(14), pages 1-18, July.
    3. Stanford Shateyi & Hillary Muzara, 2020. "On Numerical Analysis of Carreau–Yasuda Nanofluid Flow over a Non-Linearly Stretching Sheet under Viscous Dissipation and Chemical Reaction Effects," Mathematics, MDPI, vol. 8(7), pages 1-24, July.
    4. Paweł Węgierek & Damian Kostyła & Michał Lech & Czesław Kozak & Alicja Zielonka, 2023. "Pressure Monitoring in Medium-Voltage Vacuum Interrupters," Energies, MDPI, vol. 16(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4114-:d:1147891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.