IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p329-d1017538.html
   My bibliography  Save this article

Internet Threat Detection in Smart Grids Based on Network Traffic Analysis Using LSTM, IF, and SVM

Author

Listed:
  • Szymon Stryczek

    (Institute of Telecommunications, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
    These authors contributed equally to this work.)

  • Marek Natkaniec

    (Institute of Telecommunications, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
    These authors contributed equally to this work.)

Abstract

The protection of users of ICT networks, including smart grids, is a challenge whose importance is constantly growing. Internet of Things (IoT) or Internet of Energy (IoE) devices, as well as network resources, store more and more information about users. Large institutions use extensive security systems requiring large and expensive resources. For smart grid users, this becomes difficult. Efficient methods are needed to take advantage of limited sets of traffic features. In this paper, machine learning techniques to verify network events for recognition of Internet threats were analyzed, intentionally using a limited number of parameters. The authors considered three machine learning techniques: Long Short-Term Memory, Isolation Forest, and Support Vector Machine. The analysis is based on two datasets. In the paper, the data preparation process is also described. Eight series of results were collected and compared with other studies. The results showed significant differences between the techniques, the size of the datasets, and the balance of the datasets. We also showed that a more accurate classification could be achieved by increasing the number of analyzed features. Unfortunately, each increase in the number of elements requires more extensive analysis. The work ends with a description of the steps that can be taken in the future to improve the operation of the models and enable the implementation of the described methods of analysis in practice.

Suggested Citation

  • Szymon Stryczek & Marek Natkaniec, 2022. "Internet Threat Detection in Smart Grids Based on Network Traffic Analysis Using LSTM, IF, and SVM," Energies, MDPI, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:329-:d:1017538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Bharati S. Ainapure & Nicu Bizon, 2023. "A Blockchain-Enabled Approach for Enhancing Synchrophasor Measurement in Smart Grid 3.0," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    2. Wenbing Zhao & Quan Qi & Jiong Zhou & Xiong Luo, 2023. "Blockchain-Based Applications for Smart Grids: An Umbrella Review," Energies, MDPI, vol. 16(17), pages 1-35, August.
    3. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    4. Smitha Joyce Pinto & Pierluigi Siano & Mimmo Parente, 2023. "Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection," Energies, MDPI, vol. 16(4), pages 1-24, February.
    5. MikoĊ‚aj Gwiazdowicz & Marek Natkaniec, 2023. "Feature Selection and Model Evaluation for Threat Detection in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-25, June.
    6. Mahvash, Hossein & Taher, Seyed Abbas & Guerrero, Josep M., 2024. "Mitigation of severe false data injection attacks (FDIAs) in marine current turbine (MCT) type 4 synchronous generator renewable energy using promoted backstepping method," Renewable Energy, Elsevier, vol. 222(C).
    7. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:329-:d:1017538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.