Author
Listed:
- Peng He
(Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
School of Earth Resources, China University of Geosciences, Wuhan 430074, China)
- Xiang Ge
(Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
School of Earth Resources, China University of Geosciences, Wuhan 430074, China)
- Chuanbo Shen
(Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
School of Earth Resources, China University of Geosciences, Wuhan 430074, China)
- Shuaiping Li
(Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
School of Earth Resources, China University of Geosciences, Wuhan 430074, China)
- Youzhi Chen
(BGP Southwest Geophysical Company, CNPC, Chengdu 610213, China)
Abstract
In the process of diagenesis and burial of sedimentary basins, basin fluid activities participate in the process of hydrocarbon accumulation and metal mineralization. Understanding the evolution of basin fluid is of great significance in revealing the related hydrocarbon accumulation and mineralization. Paleo-reservoirs are closely associated with Carlin-type gold deposits in the Nanpanjiang-Youjiang Basin, South China. Calcite, the fluid activity product, is closely related to bitumen and gold-bearing pyrite. By integrating petrographic, cathode luminescence, and fluid inclusion analysis, as well as the relevant chronological results of predecessors, this paper attempts to establish the relationship between fluid evolution, hydrocarbon accumulation, and gold mineralization. Two types of calcite (black/gray and white) developed in the Banqi-Yata-Laizishan area, the Nanpanjiang-Youjiang Basin. Black/gray calcite is symbiotic with bitumen and features dark red colors in cathode luminescence. Many hydrocarbon inclusions developed along with fluid inclusion analysis at low homogenization temperatures (65.7~173.1 °C). Combining the previously reported U-Pb ages (~250–230 Ma) of this kind of calcite with some geochemistry data on the associated reservoir and gold deposit, this calcite records the consecutive hydrocarbon accumulation and Carlin-type gold mineralization from the Late Permian to the Late Triassic periods controlled by Indosinian tectonic movement. The white calcite featuring bright red in cathodoluminescence is symbiotic with gold-bearing pyrite and realgar, and the associated fluid inclusions have high homogenization temperatures (128.2~299.9 °C). Combined with regional tectonic background and isotopic chronology (~140–106 Ma), it seems to record the early Cretaceous Carlin-type gold mineralization controlled by the subduction of the paleo-Pacific plate in the late Yanshanian period.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:328-:d:1017550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.