IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p323-d1017544.html
   My bibliography  Save this article

Implementation of an ADALINE-Based Adaptive Control Strategy for an LCLC-PV-DSTATCOM in Distribution System for Power Quality Improvement

Author

Listed:
  • Soumya Mishra

    (Department of Electrical Engineering, MVJ College of Engineering, Bengaluru 560067, India)

  • Sreejith Rajashekaran

    (Department of Electrical Engineering, MVJ College of Engineering, Bengaluru 560067, India)

  • Pavan Kalyan Mohan

    (Department of Electrical Engineering, MVJ College of Engineering, Bengaluru 560067, India)

  • Spoorthi Mathad Lokesh

    (Department of Electrical Engineering, MVJ College of Engineering, Bengaluru 560067, India)

  • Hemalatha Jyothinagaravaishya Ganiga

    (Department of Electrical Engineering, MVJ College of Engineering, Bengaluru 560067, India)

  • Santanu Kumar Dash

    (TIFAC-CORE, Vellore Institute of Technology, Vellore 632014, India)

  • Michele Roccotelli

    (Department of Electrical and Information Engineering (DEI), Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italy)

Abstract

This study investigated the problem of controlling a three-phase three-wire photovoltaic (PV)-type distribution static compensator (DSTATCOM). In order to model, simulate, and control the system, the MATLAB/SIMULINK tool was used. Different controllers were applied to create switching pulses for the IGBT-based voltage source converter (VSC) for the mitigation of various power quality issues in the PV-DSTATCOM. Traditional control algorithms guarantee faultless execution or outcomes only for a restricted range of operating situations due to their present design. Alternative regulators depend on more resilient neural network and fuzzy logic algorithms that may be programmed to operate in a variety of settings. In this study, an adaptive linear neural network (ADALINE) was proposed to solve the control problem more efficiently than the existing methods. The ADALINE method was simulated and the results were compared with the results of the synchronous reference frame theory (SRFT), improved linear sinusoidal tracer (ILST), and backpropagation (BP) algorithms. The simulation results showed that the proposed ADALINE method outperformed the compared algorithms. In addition, the total harmonic distortions (THDs) of the source current were estimated under ideal grid voltage conditions based on IEEE-929 and IEEE-519 guidelines.

Suggested Citation

  • Soumya Mishra & Sreejith Rajashekaran & Pavan Kalyan Mohan & Spoorthi Mathad Lokesh & Hemalatha Jyothinagaravaishya Ganiga & Santanu Kumar Dash & Michele Roccotelli, 2022. "Implementation of an ADALINE-Based Adaptive Control Strategy for an LCLC-PV-DSTATCOM in Distribution System for Power Quality Improvement," Energies, MDPI, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:323-:d:1017544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariano Gallo & Mario Marinelli, 2023. "The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context," Energies, MDPI, vol. 16(1), pages 1-20, January.
    2. Manuel Rey-Moreno & Rafael Periáñez-Cristóbal & Arturo Calvo-Mora, 2022. "Reflections on Sustainable Urban Mobility, Mobility as a Service (MaaS) and Adoption Models," IJERPH, MDPI, vol. 20(1), pages 1-14, December.
    3. Mariano Gallo & Mario Marinelli, 2022. "The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO 2 Emissions: The Case of Italy," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    4. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    5. M, Aravindan & V, Madhan Kumar & Hariharan, V.S. & Narahari, Tharun & P, Arun Kumar & K, Madhesh & G, Praveen Kumar & Prabakaran, Rajendran, 2023. "Fuelling the future: A review of non-renewable hydrogen production and storage techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    7. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.
    8. Mustafa Jaradat & Omar Alsotary & Adel Juaidi & Aiman Albatayneh & Asem Alzoubi & Shiva Gorjian, 2022. "Potential of Producing Green Hydrogen in Jordan," Energies, MDPI, vol. 15(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:323-:d:1017544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.