Author
Listed:
- Huan-Liang Tsai
(Department of Computer Science and Information Engineering, Da-Yeh University, Changhua 515006, Taiwan)
- Le Phuong Truong
(Department of Electrical and Electronics Engineering, Faculty of Mechatronics and Electronics Technology, Lac Hong University, Bien Hoa City 084, Vietnam)
- Wei-Hung Hsieh
(Department of Electrical Engineering, Da-Yeh University, Changhua 515006, Taiwan)
Abstract
The paper is aimed to develop a wireless alternating current (AC) power monitoring module which features the advantage of cost-effectiveness and sufficient reliability for the proposed AC power monitoring Internet of Things (IoT) system. The novel wireless AC power monitoring module consists of both ZMPT101B voltage sensor and ACS712-20 current sensor; a 16-bit analog-to-digital (ADC) ADS1114 with I 2 C interface and WeMos D1 Mini Wi-Fi module were integrated for monitoring refrigerator and air conditioner appliances with the ratings of single-phase 110/220 V AC , respectively. First, both analog readings of V/I sensors for AC appliances are converted into data streams in compliance with I 2 C (inter-integrated circuit) protocol, and are forwarded to a WeMos D1 Mini Wi-Fi module for the corresponding values of instantaneous electric power and energy, power factor (pf), and frequency well programmed in the built-in ESP8266EX IoT-based microcontroller unit (MCU) based on the well-known AC power fundamentals. All of the important AC power parameters are sent to the ThingSpeak IoT platform through Wi-Fi network. The visualization of voltage, current, electric power and energy, pf, and frequency is illustrated in the ThingSpeak IoT platform. Both close agreement and confidence of the proposed AC power monitoring IoT system for both refrigerator and air conditioner are evaluated with two CM3286-1 AC Power Meters. Taking the commercialized CM3286-1 instrument as reference, the values of mean absolute percentage error (MAPE) for above six electrical parameter readings are all less than 2%. The evaluation results illustrate sufficient closeness of agreement and confidence for the proposed wireless AC power monitoring IoT system for in situ monitoring AC appliances with single-phase 110/220 V AC ratings. Furthermore, the cost of the proposed AC power monitoring module is less than 100 USD, which makes the novel module more cost-effective than commercialized AC power meters which generally cost over 1000 USD. The novelties of the work are the following: (1) the introduction of ADS1114 provides I 2 C interface directly for Wi-Fi module to reduce the capital cost of the proposed wireless AC power monitoring module; (2) the sufficient confidence of the proposed AC power monitoring IoT system has been validated with closeness of agreement as compared to the commercialized CM3286-1 AC Power Meters. These make the assessment action of environmental, social, and governance (EGS) for stakeholders much more feasible with the advantages of cost-effectiveness and sufficient confidence.
Suggested Citation
Huan-Liang Tsai & Le Phuong Truong & Wei-Hung Hsieh, 2022.
"Design and Evaluation of Wireless Power Monitoring IoT System for AC Appliances,"
Energies, MDPI, vol. 16(1), pages 1-27, December.
Handle:
RePEc:gam:jeners:v:16:y:2022:i:1:p:163-:d:1013163
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:163-:d:1013163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.