IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3356-d808710.html
   My bibliography  Save this article

Generation and Propagation Characteristics of an Auto-Ignition Flame Kernel Caused by the Oblique Shock in a Supersonic Flow Regime

Author

Listed:
  • Wenxiong Xi

    (School of Aeronautics and Astronautics, Central South University, Changsha 410012, China)

  • Mengyao Xu

    (School of Aeronautics and Astronautics, Central South University, Changsha 410012, China)

  • Chaoyang Liu

    (College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410015, China)

  • Jian Liu

    (School of Aeronautics and Astronautics, Central South University, Changsha 410012, China)

  • Bengt Sunden

    (School of Aeronautics and Astronautics, Central South University, Changsha 410012, China
    Department of Energy Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden)

Abstract

The auto-ignition caused by oblique shocks was investigated experimentally in a supersonic flow regime, with the incoming flow at a Mach number of 2.5. The transient characteristics of the auto-ignition caused by shock evolvements were recorded with a schlieren photography system, and the initial flame kernel generation and subsequent propagation were recorded using a high-speed camera. The fuel mixing characteristics were captured using NPLS (nanoparticle-based planar laser scattering method). This work aimed to reveal the flame spread mechanism in a supersonic flow regime. The effects of airflow total temperature, fuel injection pressure, and cavity length in the process of auto-ignition and on the auto-ignitable boundary were investigated and analyzed. From this work, it was found that the initial occurrence of auto-ignition is first induced by oblique shocks and then propagated upstream to the recirculation region, to establish a sustained flame. The auto-ignition performance can be improved by increasing the injection pressure and airflow total temperature. In addition, a cavity with a long length has benefits in controlling the flame spread from the induced state to a sustained state. The low-speed recirculating region created in the cavity is beneficial for the flame spread, which has the function of flame-holding and prevents the flame from being blown away.

Suggested Citation

  • Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu & Bengt Sunden, 2022. "Generation and Propagation Characteristics of an Auto-Ignition Flame Kernel Caused by the Oblique Shock in a Supersonic Flow Regime," Energies, MDPI, vol. 15(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3356-:d:808710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Li & Mingbo Sun & Zun Cai & Yong Chen & Yongchao Sun & Fei Li & Jiajian Zhu, 2020. "Effects of Additional Cavity Floor Injection on the Ignition and Combustion Processes in a Mach 2 Supersonic Flow," Energies, MDPI, vol. 13(18), pages 1-17, September.
    2. A. Antony Athithan & S. Jeyakumar & Norbert Sczygiol & Mariusz Urbanski & A. Hariharasudan, 2021. "The Combustion Characteristics of Double Ramps in a Strut-Based Scramjet Combustor," Energies, MDPI, vol. 14(4), pages 1-20, February.
    3. Eunju Jeong & Sean O’Byrne & In-Seuck Jeung & A. F. P. Houwing, 2020. "The Effect of Fuel Injection Location on Supersonic Hydrogen Combustion in a Cavity-Based Model Scramjet Combustor," Energies, MDPI, vol. 13(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byeong-Jo Hwang & Seongki Min, 2023. "Numerical Investigation of the Effect of Supersonic Air Temperature on the Mixing Characteristics of Liquid Fuel," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Naresh Relangi & Antonella Ingenito & Suppandipillai Jeyakumar, 2021. "The Implication of Injection Locations in an Axisymmetric Cavity-Based Scramjet Combustor," Energies, MDPI, vol. 14(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3356-:d:808710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.