IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3262-d805518.html
   My bibliography  Save this article

An Integrated Elitist Approach to the Design of Axial Flux Permanent Magnet Synchronous Wind Generators (AFPMWG)

Author

Listed:
  • Omid Shariati

    (School of Construction Management and Engineering, University of Reading, Reading RG6 6AH, UK)

  • Ali Behnamfar

    (Department of Electrical Engineering, IAU-Birjand Branch, Birjand 9717811111, Iran)

  • Ben Potter

    (School of Construction Management and Engineering, University of Reading, Reading RG6 6AH, UK)

Abstract

This paper addresses an integrated and developed approach to the design of an Axial Flux Permanent Magnet Wind Generator (AFPMWG). The proposed analytical method of design employs the size equations and precise inductance calculations simultaneously, as well as considering the mechanical constraints of the back-iron disc of the rotor. An Elitist Genetic Algorithm (EGA), such as a high capability optimization method, has been used to solve the equations and design of a wind generator with predefined rating power. The objectives of the coreless AFPMWG design process are minimizing the magnet consumption, maximizing machine efficiency, and achieving maximum sinusoidal induction voltage, considering the wind properties of the geographical area of utilization. The optimal calculation of the permanent magnet thickness is also taken into consideration in this work. The flux density distribution in all parts of the machine has been investigated for the magnetic saturation phenomenon. In this regard, special attention is paid to rotor back discs, which are made from nonlinear material with an optimum thickness. The inductance of the leakage flux of the coreless machine has been considered by parallel computation via the Finite Element Method (FEM) and analytical equations. Finally, three-dimensional and two-dimensional finite element analyses are used to validate the performance of the machine design according to the characteristics of Iran wind resources. The results show the high ability of the proposed approach in AFPMWG design and in considering the objectives and constraints carefully.

Suggested Citation

  • Omid Shariati & Ali Behnamfar & Ben Potter, 2022. "An Integrated Elitist Approach to the Design of Axial Flux Permanent Magnet Synchronous Wind Generators (AFPMWG)," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3262-:d:805518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3262/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyuan Wang & Tianyuan Li & Xiaohong Cui & Xiaoxiao Zhao, 2022. "Design and Analysis of Coreless Axial Flux Permanent Magnet Machine with Novel Composite Structure Coils," Energies, MDPI, vol. 15(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3262-:d:805518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.