IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3100-d800879.html
   My bibliography  Save this article

A Negative Sequence Current Phasor Compensation Technique for the Accurate Detection of Stator Shorted Turn Faults in Induction Motors

Author

Listed:
  • Syaiful Bakhri

    (Research Centre for Nuclear Fuel Cycle and Radioactive Waste Technology, National Research and Innovation Agency of Republic Indonesia, Puspiptek Complex, Building 20, Tangerang Selatan 15314, Banten, Indonesia)

  • Nesimi Ertugrul

    (Research Centre for Nuclear Fuel Cycle and Radioactive Waste Technology, National Research and Innovation Agency of Republic Indonesia, Puspiptek Complex, Building 20, Tangerang Selatan 15314, Banten, Indonesia)

Abstract

Stator faults are the most critical faults in induction motors as they develop quickly hence requiring fast online diagnostic methods. A number of online condition monitoring techniques are proposed in the literature to respond to such faults, including the signature analysis of the stator current, vibration monitoring, flux leakage monitoring, negative sequence components of voltage and current and sequence components monitoring based on the identification of asymmetrical behavior in a machine. Negative sequence components of voltage and current and sequence components monitoring are commonly considered for the identification of asymmetrical behavior of induction motors. Negative sequence current analysis is a sensitive technique for the detection of shorted turns as it directly measures the asymmetry produced by the fault. However, the technique is sensitive to other asymmetrical faults and disturbances, which can also produce negative sequence currents. These disturbances include sensor errors, inherent asymmetry and voltage unbalance. This paper provides a comprehensive investigation of the disturbances using a motor model along with experimental measurements under varying load conditions. Then, a new phasor compensation technique is explained to eliminate such disturbances effectively. This technique enables the accurate detection of even relatively small shorted turn faults, even at an early stage. The technique is tested experimentally, and a set of practical results are given to validate the methods developed.

Suggested Citation

  • Syaiful Bakhri & Nesimi Ertugrul, 2022. "A Negative Sequence Current Phasor Compensation Technique for the Accurate Detection of Stator Shorted Turn Faults in Induction Motors," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3100-:d:800879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3100/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gopu Venugopal & Arun Kumar Udayakumar & Adhavan Balashanmugham & Mohamad Abou Houran & Faisal Alsaif & Rajvikram Madurai Elavarasan & Kannadasan Raju & Mohammed H. Alsharif, 2023. "Fault Identification and Classification of Asynchronous Motor Drive Using Optimization Approach with Improved Reliability," Energies, MDPI, vol. 16(6), pages 1-25, March.
    2. Marco Antonio Rodriguez-Blanco & Victor Golikov & René Osorio-Sánchez & Oleg Samovarov & Gerardo Ortiz-Torres & Rafael Sanchez-Lara & Jose Luis Vazquez-Avila, 2022. "Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations," Energies, MDPI, vol. 15(22), pages 1-19, November.
    3. Tomas Garcia-Calva & Daniel Morinigo-Sotelo & Vanessa Fernandez-Cavero & Rene Romero-Troncoso, 2022. "Early Detection of Faults in Induction Motors—A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3100-:d:800879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.