IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3096-d800784.html
   My bibliography  Save this article

A Rolling Horizon Optimization Framework for Resilient Restoration of Active Distribution Systems

Author

Listed:
  • Ning Xin

    (College of Water Resources and Electric Power, Qinghai University, Xining 810016, China)

  • Laijun Chen

    (Qinghai Key Laboratory of Efficient Utilization of Clean Energy, Tus-Institute for Renewable Energy, Qinghai University, Xining 810016, China)

  • Linrui Ma

    (Qinghai Key Laboratory of Efficient Utilization of Clean Energy, Tus-Institute for Renewable Energy, Qinghai University, Xining 810016, China)

  • Yang Si

    (Qinghai Key Laboratory of Efficient Utilization of Clean Energy, Tus-Institute for Renewable Energy, Qinghai University, Xining 810016, China)

Abstract

Network reconfiguration is an effective way to avoid severe, large-scale power outages and to improve the resilience of active distribution networks (ADNs). Furthermore, the rapid development of distributed energy resources (DERs) provides new perspectives for network reconfiguration. In this paper, the effect of network reconfiguration and DER collaboration on ADN’s resilient restoration are studied. The applications of DERs are fully explored. In order to achieve a better resilient performance, a detailed multiperiod model considering both reconfiguration and multiple DERs is established. Some linearization techniques are used to simplify the proposed model. Then, we build a rolling horizon optimization framework to solve the model. The framework eliminates the adverse effect of prediction errors and speeds up the calculation. By introducing predictions into strategy determination, the framework achieves a better restoration effect than the traditional greedy method. The proposed framework is tested on a 33-bus system. The simulations verify the efficiency of our work.

Suggested Citation

  • Ning Xin & Laijun Chen & Linrui Ma & Yang Si, 2022. "A Rolling Horizon Optimization Framework for Resilient Restoration of Active Distribution Systems," Energies, MDPI, vol. 15(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3096-:d:800784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Tao & Wang, Jianhui & Lu, Xiaonan & Du, Yuhua, 2022. "AC/DC hybrid distribution network reconfiguration with microgrid formation using multi-agent soft actor-critic," Applied Energy, Elsevier, vol. 307(C).
    2. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Li Hu, 2022. "Energy Resilience in Presence of Natural and Social Uncertainties," Energies, MDPI, vol. 15(18), pages 1-3, September.
    2. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Guodong Liu & Zhi Li & Yaosuo Xue & Kevin Tomsovic, 2022. "Microgrid Assisted Design for Remote Areas," Energies, MDPI, vol. 15(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    2. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    3. Alex Guamán & Alex Valenzuela, 2021. "Distribution Network Reconfiguration Applied to Multiple Faulty Branches Based on Spanning Tree and Genetic Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
    4. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    5. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    6. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    7. Shi, Qingxin & Li, Fangxing & Dong, Jin & Olama, Mohammed & Wang, Xiaofei & Winstead, Chris & Kuruganti, Teja, 2022. "Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience," Applied Energy, Elsevier, vol. 318(C).
    8. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Yixiao Fang & Junjie Yang & Wei Jiang, 2023. "Optimal Scheduling Strategy of Microgrid Based on Reactive Power Compensation of Electric Vehicles," Energies, MDPI, vol. 16(22), pages 1-23, November.
    10. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    11. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    12. Habibollah Raoufi & Vahid Vahidinasab & Kamyar Mehran, 2020. "Power Systems Resilience Metrics: A Comprehensive Review of Challenges and Outlook," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    13. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    14. Xie, Haipeng & Tang, Lingfeng & Zhu, Hao & Cheng, Xiaofeng & Bie, Zhaohong, 2023. "Robustness assessment and enhancement of deep reinforcement learning-enabled load restoration for distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Mousavizadeh, Saeed & Haghifam, Mahmoud-Reza & Shariatkhah, Mohammad-Hossein, 2018. "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources," Applied Energy, Elsevier, vol. 211(C), pages 443-460.
    16. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    17. Ghasemi, Sasan & Moshtagh, Jamal, 2022. "Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems," Applied Energy, Elsevier, vol. 310(C).
    18. Li, Peng & Ji, Jie & Ji, Haoran & Song, Guanyu & Wang, Chengshan & Wu, Jianzhong, 2020. "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, Elsevier, vol. 195(C).
    19. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Li, Boda & Chen, Ying & Wei, Wei & Hou, Yunhe & Mei, Shengwei, 2022. "Enhancing resilience of emergency heat and power supply via deployment of LNG tube trailers: A mean-risk optimization approach," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3096-:d:800784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.