IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3081-d800151.html
   My bibliography  Save this article

Denoising Transient Power Quality Disturbances Using an Improved Adaptive Wavelet Threshold Method Based on Energy Optimization

Author

Listed:
  • Hui Hwang Goh

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Ling Liao

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Dongdong Zhang

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Wei Dai

    (School of Electrical Engineering, Guangxi University, Nanning 530004, China)

  • Chee Shen Lim

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou Industrial Park, 111 Ren’ai Road, Suzhou 215028, China)

  • Tonni Agustiono Kurniawan

    (College of Environment and Ecology, Xiamen University, Xiamen 361102, China)

  • Kai Chen Goh

    (Department of Technology Management, Faculty of Construction Management and Business, University Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia)

  • Chin Leei Cham

    (Faculty of Engineering (FOE), BR4081, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia)

Abstract

Noise significantly reduces the detection accuracy of transient power quality disturbances. It is critical to denoise the disturbance. The purpose of this research is to present an improved wavelet threshold denoising method and an adaptive parameter selection strategy based on energy optimization to address the issue of unclear parameter values in existing improved wavelet threshold methods. To begin, we introduce the peak-to-sum ratio and combine it with an adaptive correction factor to modify the general threshold. After calculating the energy of each layer of wavelet coefficient, the scale with the lowest energy is chosen as the optimal critical scale, and the correction factor is adaptively adjusted according to the critical scale. Following that, an improved threshold function with a variable factor is proposed, with the variable factor being controlled by the critical scale in order to adapt to different disturbance types’ denoising. The simulation results show that the proposed method outperforms existing methods for denoising various types of power quality disturbance signals, significantly improving SNR and minimizing MSE, while retaining critical information during disturbance mutation. Meanwhile, the effective location of the denoised signal based on the proposed method is realized by singular value decomposition. The minimum location error is 0%, and the maximum is three disturbance points.

Suggested Citation

  • Hui Hwang Goh & Ling Liao & Dongdong Zhang & Wei Dai & Chee Shen Lim & Tonni Agustiono Kurniawan & Kai Chen Goh & Chin Leei Cham, 2022. "Denoising Transient Power Quality Disturbances Using an Improved Adaptive Wavelet Threshold Method Based on Energy Optimization," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3081-:d:800151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang Sun & Jing Zhang & Wenwen Shi & Jingdie Guo, 2019. "Extraction of Partial Discharge Pulses from the Complex Noisy Signals of Power Cables Based on CEEMDAN and Wavelet Packet," Energies, MDPI, vol. 12(17), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fezai, Radhia & Malluhi, Byanne & Basha, Nour & Ibrahim, Gasim & Choudhury, Hanif A. & Challiwala, Mohamed S. & Nounou, Hazem & Elbashir, Nimir & Nounou, Mohamed, 2023. "Bayesian optimization of multiscale kernel principal component analysis and its application to model Gas-to-liquid (GTL) process data," Energy, Elsevier, vol. 284(C).
    2. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3081-:d:800151. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.