IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2909-d794733.html
   My bibliography  Save this article

Pore Connectivity Characteristics and Controlling Factors for Black Shales in the Wufeng-Longmaxi Formation, Southeastern Sichuan Basin, China

Author

Listed:
  • Fei Zhao

    (Xuzhou Datun Engineering Consulting Co., Ltd., Xuzhou 221618, China
    School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221008, China)

  • Zaitian Dong

    (School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221008, China)

  • Chaoyong Wang

    (School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou 221008, China)

  • Wenli Zhang

    (School of Management, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Rui Yu

    (School of Mines, China University of Mining and Technology, Xuzhou 221008, China)

Abstract

Investigations into the connectivity and complexity of pore systems in shales are essential for understanding the flow of shale gas and the capacities of the associated reservoirs. In the present study, eight shale samples from the Wufeng-Longmaxi (WF-LMX) Formation that were collected from Well Yucan-6 in the southeast of the Sichuan Basin were analyzed for microstructural, pore network, and pore connectivity characteristics. The measurement results of low-pressure nitrogen adsorption illustrated that all shale samples contain micropores, mesopores, and macropores. Micropores and mesopores account for a high proportion of the total pores, and the dominant pore throat size is in the range of 2–6 nm. High-pressure mercury injection tests reveal that the porosity, total pore volume, and total specific surface area of pores for samples from the WF Formation are higher than those for samples from the LMX Formation. In spontaneous absorption experiments, the slopes of the absorption curves of n -decane (oil-wetting) and deionized water (water-wetting) in the WF and LMX Formations varied from 0.254 to 0.428 and from 0.258 to 0.317, respectively. These results indicate that shales in both formations exhibit mixed wettability characteristics, but lipophilic pores are better connected relative to hydrophilic pores. The total organic carbon and silica contents are the main factors controlling the pore connectivity in these shales, while the effects of other minerals are not significant. The findings of this work can improve our understanding of the pore structure characteristics of black shale.

Suggested Citation

  • Fei Zhao & Zaitian Dong & Chaoyong Wang & Wenli Zhang & Rui Yu, 2022. "Pore Connectivity Characteristics and Controlling Factors for Black Shales in the Wufeng-Longmaxi Formation, Southeastern Sichuan Basin, China," Energies, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2909-:d:794733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2909/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting’an Bai & Feng Yang & Huan Wang & He Zheng, 2022. "Adhesion Forces of Shale Oil Droplet on Mica Surface with Different Roughness: An Experimental Investigation Using Atomic Force Microscopy," Energies, MDPI, vol. 15(17), pages 1-15, September.
    2. Kui Xiang & Liangjun Yan & Gang Yu & Xinghao Wang & Yuanyuan Luo, 2022. "Research on Rock Minerals and IP Response Characteristics of Shale Gas Reservoir in Sichuan Basin," Energies, MDPI, vol. 15(17), pages 1-14, September.
    3. Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2909-:d:794733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.