IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2875-d793999.html
   My bibliography  Save this article

Leidenfrost Temperature on Trapezoidal Grooved Surface

Author

Listed:
  • Qiwei Cao

    (Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa City 277-8563, Chiba, Japan)

  • Yu Chen

    (Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa City 277-8563, Chiba, Japan)

Abstract

In this study, we reported experimental results of a water droplet falling on trapezoidal grooved surfaces of heated silicon wafers with the groove width varied from 20 μm to 640 μm and the depth from 20 μm to 40 μm. Based on the observation of droplet dynamics captured by high-speed camera, we found that on the denser grooved surface, the maximum spreading diameter of the droplet perpendicular to the groove direction was smaller than that on the sparser grooved surface with the same groove depth. The residence time of the droplet on the denser grooved surface was shorter than that on the sparser grooved surface. The Leidenfrost point increased 50 °C with the groove width varied from 20 μm to 640 μm and decreased 10 °C when the depth was changed from 20 μm to 40 μm, which were higher than that on the smooth surface. Due to the deformation of the droplet during the droplet dynamics, it was difficult to calculate the heat transfer by measuring the droplet volume reduction rate. Based on the convective heat transfer from the grooved surface to the droplet, a Leidenfrost point model was developed. The results calculated by the model are in agreement with the experimental data.

Suggested Citation

  • Qiwei Cao & Yu Chen, 2022. "Leidenfrost Temperature on Trapezoidal Grooved Surface," Energies, MDPI, vol. 15(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2875-:d:793999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhe Yan & Yan Li, 2018. "A Comprehensive Study of Dynamic and Heat Transfer Characteristics of Droplet Impact on Micro-Scale Rectangular Grooved Surface," Energies, MDPI, vol. 11(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.
    2. Hongyue Yang & Ji Qian & Ming Yang & Chunxi Li & Hengfan Li & Songling Wang, 2020. "Study on the Effects of Microstructural Surfaces on the Attachment of Moving Microbes," Energies, MDPI, vol. 13(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2875-:d:793999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.