IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2755-d789947.html
   My bibliography  Save this article

Model Predictive Supervisory Control for Integrated Emission Management of Diesel Engines

Author

Listed:
  • Johannes Ritzmann

    (Department of Mechanical Engineering and Process Control, ETH Zürich, 8092 Zürich, Switzerland)

  • Christian Peterhans

    (FPT Motorenforschung AG, 9320 Arbon, Switzerland)

  • Oscar Chinellato

    (FPT Motorenforschung AG, 9320 Arbon, Switzerland)

  • Manuel Gehlen

    (FPT Motorenforschung AG, 9320 Arbon, Switzerland)

  • Christopher Onder

    (Department of Mechanical Engineering and Process Control, ETH Zürich, 8092 Zürich, Switzerland)

Abstract

In this work, a predictive supervisory controller is presented that optimizes the interaction between a diesel engine and its aftertreatment system (ATS). The fuel consumption is minimized while respecting an upper bound on the emitted tailpipe NO x mass. This is achieved by optimally balancing the fuel consumption, the engine-out NO x emissions, and the ATS heating. The proposed predictive supervisory controller employs a two-layer model predictive control structure and solves the optimal control problem using a direct method. Through experimental validation, the resulting controller was shown to reduce the fuel consumption by 1.1% at equivalent tailpipe NO x emissions for the nonroad transient cycle when compared to the operation with a fixed engine calibration. Further, the controller’s robustness to different missions, initial ATS temperatures, NO x limits, and mispredictions was demonstrated.

Suggested Citation

  • Johannes Ritzmann & Christian Peterhans & Oscar Chinellato & Manuel Gehlen & Christopher Onder, 2022. "Model Predictive Supervisory Control for Integrated Emission Management of Diesel Engines," Energies, MDPI, vol. 15(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2755-:d:789947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephan Zentner & Jonas Asprion & Christopher Onder & Lino Guzzella, 2014. "An Equivalent Emission Minimization Strategy for Causal Optimal Control of Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-21, February.
    2. Johannes Ritzmann & Oscar Chinellato & Richard Hutter & Christopher Onder, 2021. "Optimal Integrated Emission Management through Variable Engine Calibration," Energies, MDPI, vol. 14(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    2. Johannes Ritzmann & Oscar Chinellato & Richard Hutter & Christopher Onder, 2021. "Optimal Integrated Emission Management through Variable Engine Calibration," Energies, MDPI, vol. 14(22), pages 1-23, November.
    3. Hamza Mediouni & Amal Ezzouhri & Zakaria Charouh & Khadija El Harouri & Soumia El Hani & Mounir Ghogho, 2022. "Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-17, September.
    4. Antonio Rossetti & Nicola Andretta & Alarico Macor, 2022. "On the Use of the Disability-Adjusted Life Year (DALY) Estimator as a Metric to Optimally Manage ICE Emissions," Energies, MDPI, vol. 15(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2755-:d:789947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.