IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2547-d784067.html
   My bibliography  Save this article

Effects of Long-Term Vibration on Cellulose Degradation in an Oil-Impregnated Pressboard under Simultaneous Thermal–Electrical–Mechanical Stress Aging

Author

Listed:
  • Shijun Li

    (China Coal Research Institute, Beijing 100013, China
    CCTEG Coal Mining Research Institute, Beijing 100013, China)

  • Liuqing Yang

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Shengtao Li

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Due to the complex operation conditions in a power transformer, an oil-impregnated pressboard (OIP) simultaneously suffers from thermal, electrical, and mechanical stress. Since most research studies have paid much attention to thermal or electrical aging of OIPs, this paper analyzes the effects of long-term mechanical vibrations on cellulose degradation in OIPs under simultaneous multi-stress. The aging experiments were firstly conducted at 130 °C, with a DC electric voltage of +6 kV, vibration amplitude of 10–50 μm, and vibration frequency of 100–300 Hz. The finite element analysis (FEA) of the pressboard vibration model was then performed on Abaqus to investigate the time–frequency domain characteristic parameters of compressive stress on the pressboard under varied vibration frequencies and amplitudes. The FEA results reveal that compressive stress on the pressboard in a multi-stress aging experiment coincided with the axial compressive stress on the insulation spacers in an SZ-50000/110 transformer. Moreover, combined with the degree of polymerization (DP) of cellulose, the effects of long-term vibration on cellulose degradation are reflected in two ways: the increase in compressive stress on the pressboard generates more links available for degradation, while more high frequency harmonic components in compressive stress accelerate the reaction rate in cellulose degradation.

Suggested Citation

  • Shijun Li & Liuqing Yang & Shengtao Li, 2022. "Effects of Long-Term Vibration on Cellulose Degradation in an Oil-Impregnated Pressboard under Simultaneous Thermal–Electrical–Mechanical Stress Aging," Energies, MDPI, vol. 15(7), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2547-:d:784067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Asghar Khan & Tao Zheng, 2019. "Modelling and Design of a Low-Level Turn-to-Turn Fault Protection Scheme for Extra-High Voltage Magnetically Controlled Shunt Reactor," Energies, MDPI, vol. 12(24), pages 1-20, December.
    2. Jiacheng Xie & Ming Dong & Boning Yu & Yizhuo Hu & Kaige Yang & Changjie Xia, 2020. "Physical Model for Frequency Domain Spectroscopy of Oil–Paper Insulation in a Wide Temperature Range by a Novel Analysis Approach," Energies, MDPI, vol. 13(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2547-:d:784067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.