IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2503-d782100.html
   My bibliography  Save this article

Position-Based Impedance Control Design for a Hydraulically Actuated Series Elastic Actuator

Author

Listed:
  • Pauli Mustalahti

    (Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland)

  • Jouni Mattila

    (Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland)

Abstract

Series elastic actuators (SEAs) have become a common actuation method in torque-controlled electric lightweight arm applications that physically interact with the environment in assembly tasks. Compared to traditional actuators, SEAs can provide high force fidelity, shock tolerance, and force sensing for interaction control. Considering inherent system dynamics and the variable stiffness of the fluid, the control design for hydraulic SEAs (HSEAs) that lead into fifth-order system is a challenging task. As a novelty, a full state feedback controller design for the developed fifth-order HSEA system is presented to serve as an inner-loop controller to handle highly nonlinear dynamics behavior. In addition, as an outer-loop impedance controller for HSEAs in heavy-duty applications, the position-based impedance controller is designed to handle control of the HSEA system during the contact motion. Experimental results with a one-degree-of-freedom real-size experimental setup with a payload of 200 kilos demonstrates the effectiveness of the proposed HSEA control methods both in the free-space motion and in a contact impedance motion.

Suggested Citation

  • Pauli Mustalahti & Jouni Mattila, 2022. "Position-Based Impedance Control Design for a Hydraulically Actuated Series Elastic Actuator," Energies, MDPI, vol. 15(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2503-:d:782100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2503/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Nie & Jiajia Liu & Gang Liu & Litong Lyu & Jie Li & Zheng Chen, 2022. "Force Tracking Impedance Control of Hydraulic Series Elastic Actuators Interacting with Unknown Environment," Mathematics, MDPI, vol. 10(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2503-:d:782100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.