IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2095-d770208.html
   My bibliography  Save this article

A Novel Algorithm for Hydrostatic-Mechanical Mobile Machines with a Dual-Clutch Transmission

Author

Listed:
  • Yusheng Xiang

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
    Department of Mobile Hydraulics, Robert Bosch GmbH, 89275 Elchingen, Germany)

  • Ruoyu Li

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
    Department of Mobile Hydraulics, Robert Bosch GmbH, 89275 Elchingen, Germany)

  • Christine Brach

    (Department of Mobile Hydraulics, Robert Bosch GmbH, 89275 Elchingen, Germany)

  • Xiaole Liu

    (Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany)

  • Marcus Geimer

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

Abstract

Mobile machines using a hydrostatic transmission is highly efficient under lower working-speed condition but less capable at higher transport velocities. To enhance overall efficiency, we have improved the powertrain design by combining a hydrostatic transmission with a dual-clutch transmission (DCT). Compared with other mechanical gearboxes, the DCT avoids the interruption of torque transmission in the process of shifting without sacrificing more transmission efficiency. However, there are some problems of unstable torque transmission during the shifting process, and an excessive torque drop occurring at the end of the gear shift, which result in a poor drive comfort. To enhance the performance of the novel structural possibility of powertrain design, we designed a novel control strategy, which maintains the sliding in the torque phase and reduces the difference before and after the engagement, for the motor torque and the clutch torques during the shifting process, and then validated the control effect with model-based simulation. As a result, the control strategy employing clutch and motor torque control achieve a smooth shifting process since the drive torque is well tracked, and highly dynamical actuators are not required. As another benefit, only two calibration parameters are designed and actually needed to adjust the control performance systematically, even for any different sizes machines. Our research indicates the possibility to adopt dual-clutch in the field of construction machines.

Suggested Citation

  • Yusheng Xiang & Ruoyu Li & Christine Brach & Xiaole Liu & Marcus Geimer, 2022. "A Novel Algorithm for Hydrostatic-Mechanical Mobile Machines with a Dual-Clutch Transmission," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2095-:d:770208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2095/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Zhu & Qinbo Zhang & Long Chen & Xiang Tian & Yingfeng Cai, 2023. "Optimization Analysis on the Transmission Characteristics of Multipurpose Power Transmission Devices," Energies, MDPI, vol. 16(19), pages 1-14, October.
    2. Ya Li & Xiaohan Chen & Xiaorong Han & Ning Xu & Zhiqiang Zhai & Kai Lu & Youfeng Zhu & Guangming Wang, 2024. "Application of Computer Simulation Technology in the Development of Tractor Transmission Systems," Agriculture, MDPI, vol. 14(9), pages 1-34, September.
    3. Zhaorui Xu & Jiabo Wang & Yanqiang Yang & Guangming Wang & Shenghui Fu, 2023. "Optimization of Shifting Quality for Hydrostatic Power-Split Transmission with Single Standard Planetary Gear Set," Agriculture, MDPI, vol. 13(9), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2095-:d:770208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.