IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2070-d769462.html
   My bibliography  Save this article

Heat Transfer Enhancement of Crossflow Air-to-Water Fin-and-Tube Heat Exchanger by Using Delta-Winglet Type Vortex Generators

Author

Listed:
  • Josip Batista

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Anica Trp

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Kristian Lenic

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

Abstract

The aim of this work is to numerically analyse fluid flow and heat transfer characteristics in a crossflow air-to-water fin-and-tube heat exchanger (FTHEX) by implementing two configurations of delta-winglet type vortex generators at the air side: delta-winglet upstream (DWU) and delta-winglet downstream (DWD). The vortex generators are mounted on a fin surface and deployed in a “common flow up” orientation. The effects of attack angles of 15°, 30° and 45° on air-side heat transfer and pressure drop were examined. Since the implementation of the full-size model would involve large numerical resources, the computational domain is simplified by considering a small segment in the direction of water flow. The fully developed temperature and velocity boundary conditions were set at the water inlets. To validate the defined mathematical model and numerical procedure, measurements have been performed on a plain FTHEX. The air side Reynolds number, based on hydraulic diameter, was in the range of 176 ≤ Re Dh ≤ 400 and water side Reynolds number, based on inner tube diameter, was constant Re di = 17,065. The results have shown that the highest increase in the Colburn factor j (by 11–27%) and reduction in the air-side thermal resistance fraction (from 78.2–76.9% for Re Dh = 176 to 76–72.4% for Re Dh = 400) is achieved by using the DWD configuration with attack angle 45°. In addition, the overall heat transfer coefficient is improved by up to 15.7%. The DWD configuration with the attack angle 30° provides the greatest improvement in the heat transfer to pressure loss ratio, 5.2–15.4% over the range of Re Dh studied.

Suggested Citation

  • Josip Batista & Anica Trp & Kristian Lenic, 2022. "Heat Transfer Enhancement of Crossflow Air-to-Water Fin-and-Tube Heat Exchanger by Using Delta-Winglet Type Vortex Generators," Energies, MDPI, vol. 15(6), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2070-:d:769462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2070/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Liang Ding & Fangming Han & Yong Shuai & Bingxi Li & Bengt Sunden, 2022. "Parametric Study on Thermo-Hydraulic Performance of NACA Airfoil Fin PCHEs Channels," Energies, MDPI, vol. 15(14), pages 1-15, July.
    2. Yi Wang & Tiejun Lu & Xianglei Liu & Adriano Sciacovelli & Yongliang Li, 2022. "Heat Transfer of Near Pseudocritical Nitrogen in Helically Coiled Tube for Cryogenic Energy Storage," Energies, MDPI, vol. 15(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2070-:d:769462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.