IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1827-d762134.html
   My bibliography  Save this article

Thermal Cloaking in Nanoscale Porous Silicon Structure by Molecular Dynamics

Author

Listed:
  • Jian Zhang

    (School of Energy and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Haochun Zhang

    (School of Energy and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yiyi Li

    (School of Energy and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Qi Wang

    (School of Energy and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Wenbo Sun

    (School of Energy and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Nanoscale thermal cloaks have great potential in the thermal protection of microelectronic devices, for example, thermal shielding of thermal components close to the heat source. Researchers have used graphene, crystalline silicon film, and silicon carbide to design a variety of thermal cloaks in different ways. In our previous research, we found that the porous structure has lower thermal conductivity compared to bulk silicon; thus, so we tried to use the porous structure to construct the functional region to control the heat flux. We first calculated the thermal conductivity of crystalline silicon and porous silicon films by means of nonequilibrium molecular dynamics, proving that the porous structure satisfied the conditions for building a thermal cloak. A rectangular cloak with a porous structure was constructed, and a crystalline silicon film was used as a reference to evaluate its performance by the index of the ratio of thermal cloaking. We found that the thermal cloak built with a porous structure could produce an excellent cloaking effect. Lastly, we explain the mechanism of the cloaking phenomenon produced by a porous structure with the help of phonon localization theory. Porous structures have increased porosity compared to bulk silicon and are not conducive to phonon transport, thus producing strong phonon localization and reducing thermal conductivity. Our research expands the construction methods of nanocloaks, expands the application of porous structure materials, and provides a reference for the design of other nanodevices.

Suggested Citation

  • Jian Zhang & Haochun Zhang & Yiyi Li & Qi Wang & Wenbo Sun, 2022. "Thermal Cloaking in Nanoscale Porous Silicon Structure by Molecular Dynamics," Energies, MDPI, vol. 15(5), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1827-:d:762134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Li & Xue Bai & Tianzhi Yang & Hailu Luo & Cheng-Wei Qiu, 2018. "Structured thermal surface for radiative camouflage," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Li & Minghong Qi & Jiaxin Li & Pei-Chao Cao & Dong Wang & Xue-Feng Zhu & Cheng-Wei Qiu & Hongsheng Chen, 2022. "Heat transfer control using a thermal analogue of coherent perfect absorption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Huagen Li & Dong Wang & Guoqiang Xu & Kaipeng Liu & Tan Zhang & Jiaxin Li & Guangming Tao & Shuihua Yang & Yanghua Lu & Run Hu & Shisheng Lin & Ying Li & Cheng-Wei Qiu, 2024. "Twisted moiré conductive thermal metasurface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Kaili Sun & Yangjian Cai & Lujun Huang & Zhanghua Han, 2024. "Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Wei Sha & Mi Xiao & Jinhao Zhang & Xuecheng Ren & Zhan Zhu & Yan Zhang & Guoqiang Xu & Huagen Li & Xiliang Liu & Xia Chen & Liang Gao & Cheng-Wei Qiu & Run Hu, 2021. "Robustly printable freeform thermal metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1827-:d:762134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.