IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1489-d751649.html
   My bibliography  Save this article

Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application

Author

Listed:
  • Vasileios Ntouros

    (Group Building Environmental Research, Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece)

  • Ioannis Kousis

    (CIRIAF—Interuniversity Research Center, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
    Department of Engineering, University of Perugia, Via G. Duranti 97, 06125 Perugia, Italy)

  • Anna Laura Pisello

    (CIRIAF—Interuniversity Research Center, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy
    Department of Engineering, University of Perugia, Via G. Duranti 97, 06125 Perugia, Italy)

  • Margarita Niki Assimakopoulos

    (Group Building Environmental Research, Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece)

Abstract

Metal–organic frameworks (MOFs) could be utilized for a wide range of applications such as sorption, catalysis, chromatography, energy storage, sensors, drug delivery, and nonlinear optics. However, to date, there are very few examples of MOFs exploited on a commercial scale. Nevertheless, progress in MOF-related research is currently paving the way to new industrial opportunities, fostering applications and processes interconnecting fundamental chemistry with engineering and relevant sectors. Yet, the fabrication of porous MOF materials within resistant structures is a key challenge impeding their wide commercial use for processes such as adsorptive separation. In fact, the integration of nano-scale MOF crystallic structures into bulk components that can maintain the desired characteristics, i.e., size, shape, and mechanical stability, is a prerequisite for their wide practical use in many applications. At the same time, it requires sophisticated shaping techniques that can structure nano/micro-crystalline fine powders of MOFs into diverse types of macroscopic bodies such as monoliths. Under this framework, this review aims to bridge the gap between research advances and industrial necessities for fostering MOF applications into real life. Therefore, it critically explores recent advances in the shaping and production of MOF macro structures with regard to the binding materials that have received little attention to date, but have the potential to give new perspectives in the industrial applicability of MOFs. Moreover, it proposes future paths that can be adopted from both academy and industry and can further boost MOF exploitation.

Suggested Citation

  • Vasileios Ntouros & Ioannis Kousis & Anna Laura Pisello & Margarita Niki Assimakopoulos, 2022. "Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application," Energies, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1489-:d:751649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hailian Li & Mohamed Eddaoudi & M. O'Keeffe & O. M. Yaghi, 1999. "Design and synthesis of an exceptionally stable and highly porous metal-organic framework," Nature, Nature, vol. 402(6759), pages 276-279, November.
    2. Vladimir A. Polyakov & Vera V. Butova & Elena A. Erofeeva & Andrei A. Tereshchenko & Alexander V. Soldatov, 2020. "MW Synthesis of ZIF-7. The Effect of Solvent on Particle Size and Hydrogen Sorption Properties," Energies, MDPI, vol. 13(23), pages 1-12, November.
    3. Philip M. Stanley & Julien Warnan, 2021. "Molecular Dye-Sensitized Photocatalysis with Metal-Organic Framework and Metal Oxide Colloids for Fuel Production," Energies, MDPI, vol. 14(14), pages 1-13, July.
    4. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    5. Vasileios Ntouros & Ioannis Kousis & Dimitra Papadaki & Anna Laura Pisello & Margarita Niki Assimakopoulos, 2021. "Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials," Energies, MDPI, vol. 14(16), pages 1-22, August.
    6. Zach Free & Maya Hernandez & Mustafa Mashal & Kunal Mondal, 2021. "A Review on Advanced Manufacturing for Hydrogen Storage Applications," Energies, MDPI, vol. 14(24), pages 1-20, December.
    7. Mattia Manni & Andrea Nicolini, 2022. "Multi-Objective Optimization Models to Design a Responsive Built Environment: A Synthetic Review," Energies, MDPI, vol. 15(2), pages 1-27, January.
    8. James Gallagher, 2018. "Towards methane targets," Nature Energy, Nature, vol. 3(2), pages 86-86, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Manni & Franco Cotana, 2022. "Life Cycle Thinking a Sustainable Built Environment," Energies, MDPI, vol. 15(10), pages 1-2, May.
    2. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    3. Yingjin Song & Ruiyi Li & Guanyi Chen & Beibei Yan & Lei Zhong & Yuxin Wang & Yihang Li & Jinlei Li & Yingxiu Zhang, 2021. "Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
    4. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    5. Niccolò Comerio & Fernanda Strozzi, 2019. "Tourism and its economic impact: A literature review using bibliometric tools," Tourism Economics, , vol. 25(1), pages 109-131, February.
    6. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    7. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    8. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    9. Muhammad Farooq Islam & Ozge Can, 2024. "Integrating digital and sustainable entrepreneurship through business models: a bibliometric analysis," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 14(1), pages 1-18, December.
    10. Urša Golob & Mark A. P. Davies & Joachim Kernstock & Shaun M. Powell, 2020. "Trending topics plus future challenges and opportunities in brand management," Journal of Brand Management, Palgrave Macmillan, vol. 27(2), pages 123-129, March.
    11. Natalya Ivanova & Ekaterina Zolotova, 2023. "Landolt Indicator Values in Modern Research: A Review," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    12. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    13. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    14. J. Gómez-Verjan & I. Gonzalez-Sanchez & E. Estrella-Parra & R. Reyes-Chilpa, 2015. "Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1019-1030, November.
    15. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    16. Juan F. Prados-Castillo & Miguel Ángel Solano-Sánchez & Pilar Guaita Fernández & José Manuel Guaita Martínez, 2023. "Potential of the Crypto Economy in Financial Management and Fundraising for Tourism," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    17. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    18. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    19. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    20. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1489-:d:751649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.