IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p895-d734820.html
   My bibliography  Save this article

Thermal Safety Analysis of On-Site Emulsion Explosives Mixed with Waste Engine Oil

Author

Listed:
  • Weibo Sun

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Xuefeng Gao

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yan Wang

    (School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yanjun Tong

    (North Special Energy Group, Corporation Limited, Xi’an 710061, China)

Abstract

The study of the thermal safety of emulsion explosives mixed with waste engine oil is very important for the safety of these types of explosives used in mine blasting. In order to study the thermal safety of emulsion explosives mixed with waste engine oil, thermal safety tests were carried out using a Differential Scanning Calorimeter (DSC), non-isothermal kinetics, and the Flynn–Wall–Ozawa method. The results show that the minor particle impurities in the filtered waste engine oil are mainly combustibles; after adding different amounts of waste engine oil, the activation energy of the emulsion matrix decreases from 110.33 kJ/mol to 75.39 kJ/mol, 74.50 kJ/mol, and 82.23 kJ/mol, and the critical temperature for thermal explosion changes from 194.16 °C to 169.73 °C, 227.47 °C, and 208.78 °C. The addition of waste engine oil reduces the activation energy of emulsion explosives. The waste engine oil is negatively correlated with the activation energy and the thermal explosion reaction temperature of emulsion explosives, and the correlation coefficient is −0.686 and −0.333. The emulsifier is positively correlated with the critical temperature of thermal explosion of emulsion explosives, and the correlation coefficient is 0.251. The small particles in the waste engine oil create a hot spot in the emulsion explosives, which reduces the thermal safety of the emulsion explosives mixed with waste engine oil. The emulsifier reduces the droplet size of the emulsion explosive, improves the oil-water interface strength, and improves the thermal safety of the emulsion explosives mixed with waste engine oil. The thermal safety of emulsion explosives mixed with waste engine oil can be improved by reducing the proportion of the sensitizer and increasing the proportion of the emulsifier.

Suggested Citation

  • Weibo Sun & Xuefeng Gao & Yan Wang & Yanjun Tong, 2022. "Thermal Safety Analysis of On-Site Emulsion Explosives Mixed with Waste Engine Oil," Energies, MDPI, vol. 15(3), pages 1-10, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:895-:d:734820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/895/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:895-:d:734820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.