IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p845-d732338.html
   My bibliography  Save this article

Fuzzy Time Series Methods Applied to (In)Direct Short-Term Photovoltaic Power Forecasting

Author

Listed:
  • Vanessa María Serrano Ardila

    (Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85867-000, PR, Brazil)

  • Joylan Nunes Maciel

    (Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85867-000, PR, Brazil
    Research Group on Energy & Energy Sustainability (GPEnSE), Cabo de Santo Agostinho 54518-430, PE, Brazil)

  • Jorge Javier Gimenez Ledesma

    (Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85867-000, PR, Brazil
    Research Group on Energy & Energy Sustainability (GPEnSE), Cabo de Santo Agostinho 54518-430, PE, Brazil)

  • Oswaldo Hideo Ando Junior

    (Research Group on Energy & Energy Sustainability (GPEnSE), Cabo de Santo Agostinho 54518-430, PE, Brazil
    Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil)

Abstract

Solar photovoltaic energy has experienced significant growth in the last decade, as well as the challenges related to the intermittency of power generation inherent to this process. In this paper we propose to perform short-term forecasting of solar PV generation using fuzzy time series (FTS). Two FTS methods are proposed and evaluated to obtain a global horizontal irradiance (GHI) value. The first is the weighted method and the second is the fuzzy information granular method. Using the direct proportionality of the power with the GHI, the spatial smoothing process was applied, obtaining spatial irradiance on which a first-order low pass filter was applied to simulated power photovoltaic system generation. Thus, this study proposed indirect and direct forecasting of solar photovoltaic generation which was statistically evaluated and the results showed that the indirect prediction showed better performance with GHI than the power simulation. Error statistics, such as RMSE and MBE, show that the fuzzy information granular method performs better than the weighted method in GHI forecasting.

Suggested Citation

  • Vanessa María Serrano Ardila & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Fuzzy Time Series Methods Applied to (In)Direct Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:845-:d:732338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/845/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    2. Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Tian Han & Ying Wang & Xiao Wang & Kang Chen & Huaiwu Peng & Zhenxin Gao & Lanxin Cui & Wentong Sun & Qinke Peng, 2023. "Mixed Multi-Pattern Regression for DNI Prediction in Arid Desert Areas," Sustainability, MDPI, vol. 15(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:845-:d:732338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.