IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1200-d743547.html
   My bibliography  Save this article

Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer

Author

Listed:
  • Basma Souayeh

    (Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
    Laboratory of Fluid Mechanics, Physics Department, Faculty of Science of Tunis, University of Tunis EI Manar, Tunis 2092, Tunisia)

  • Kashif Ali Abro

    (Faculty of Natural and Agricultural Sciences, Institute of Ground Water Studies, University of the Free State, Bloemfontein 9300, South Africa
    Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 67480, Pakistan)

  • Huda Alfannakh

    (Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Muneerah Al Nuwairan

    (Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Amina Yasin

    (Preparatory Year Deanship, Department of Basic Sciences, King Faisal University, P.O. Box 400, Al Hofuf 31982, Saudi Arabia)

Abstract

There is no denying fact that nanoparticles of carbon nanotubes are employed to improve the performance of thermal stability in comparison with traditional nanoparticles, this is because nanoparticles of carbon nanotubes possess outstanding material properties. In this manuscript, a mathematical model of mixed convective flow based on carbon nanotubes suspended in ethylene glycol has been developed and derived by means of Fourier Sine transform. In order to analyze the thermophysical properties of nanofluid, the temperature and velocity profiles have been investigated through fractional derivative and integral transforms. The comparative analysis of single and multi-walled carbon nanotubes has been presented for the sake of enhancement of heat transfer. It is worth mentioning that embedded rheological parameters have shown the sensitivity for the enhancement of heat transfer with and without fractional techniques through graphical illustration.

Suggested Citation

  • Basma Souayeh & Kashif Ali Abro & Huda Alfannakh & Muneerah Al Nuwairan & Amina Yasin, 2022. "Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer," Energies, MDPI, vol. 15(3), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1200-:d:743547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. M. Mostafizur & M. G. Rasul & M. N. Nabi, 2021. "Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach," Energies, MDPI, vol. 14(14), pages 1-19, July.
    2. Asad Ullah & Ikramullah & Mahmoud M. Selim & Thabet Abdeljawad & Muhammad Ayaz & Nabil Mlaiki & Abdul Ghafoor, 2021. "A Magnetite–Water-Based Nanofluid Three-Dimensional Thin Film Flow on an Inclined Rotating Surface with Non-Linear Thermal Radiations and Couple Stress Effects," Energies, MDPI, vol. 14(17), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basma Souayeh & Kashif Ali Abro & Suvanjan Bhattacharyya, 2023. "Editorial for the Special Issue “Heat Transfer Enhancement and Fluid Flow Features Due to the Addition of Nanoparticles in Engineering Applications”," Energies, MDPI, vol. 16(5), pages 1-3, February.
    2. Huda Alfannakh & Basma Souayeh & Najib Hdhiri & Muneerah Al Nuwairan & Muayad Al-Shaeli, 2022. "Entropy Generation and Natural Convection Heat Transfer of (MWCNT/SWCNT) Nanoparticles around Two Spaced Spheres over Inclined Plates: Numerical Study," Energies, MDPI, vol. 15(7), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehak Shafiq & Muhammad Farooq & Waqas Javed & George Loumakis & Don McGlinchey, 2023. "Thermo-Hydraulic Performance Analysis of Fe 3 O 4 -Water Nanofluid-Based Flat-Plate Solar Collectors," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    2. Beom-Jin Kim & Jae-Hong Hwang & Byunghyun Kim, 2022. "FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    3. Sina Jafari & Ali Sohani & Siamak Hoseinzadeh & Fathollah Pourfayaz, 2022. "The 3E Optimal Location Assessment of Flat-Plate Solar Collectors for Domestic Applications in Iran," Energies, MDPI, vol. 15(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1200-:d:743547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.