IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p644-d726552.html
   My bibliography  Save this article

Optimization of Operating Conditions of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation Using the Model-Based Sensitivity Analysis

Author

Listed:
  • Eun-Jung Choi

    (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea)

  • Sangseok Yu

    (School of Mechanical Engineering, Chungnam University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea)

  • Sang-Min Lee

    (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea)

Abstract

Designing a configuration of an efficient solid oxide fuel cell (SOFC) system and operating it under appropriate conditions are important for achieving a highly efficient SOFC system. In our previous research, the system layout of a SOFC system with anode off-gas recirculation was suggested, and the system performance was examined using a numerical model. In the present study, the system operating conditions were optimized based on the system configuration and numerical model developed in the previous paper. First, a parametric sensitivity analysis of the system performance was investigated to demonstrate the main operating parameters. Consequently, the fuel flow rate and recirculation ratio were selected. Then, the available operating conditions, which keep the system below the operating limits and satisfy the desired system performance ( U f u e l > 0.7 and η e l e c > 45%) were discovered. Finally, optimized operating conditions were suggested for three operating modes: optimized electrical efficiency, peak power, and heat generation. Depending on the situation, the demand for electricity and heat can be different, so different proper operating points are suggested for each mode. Additionally, using the developed model and the conducted process of this study, various optimized operating conditions can be derived for diverse cases.

Suggested Citation

  • Eun-Jung Choi & Sangseok Yu & Sang-Min Lee, 2022. "Optimization of Operating Conditions of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation Using the Model-Based Sensitivity Analysis," Energies, MDPI, vol. 15(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:644-:d:726552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eun-Jung Choi & Sangseok Yu & Ji-Min Kim & Sang-Min Lee, 2021. "Model-Based System Performance Analysis of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation," Energies, MDPI, vol. 14(12), pages 1-22, June.
    2. Shuanghong Li & Chengjun Zhan & Yupu Yang, 2018. "Control System Based on Anode Offgas Recycle for Solid Oxide Fuel Cell System," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    2. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:644-:d:726552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.