IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p567-d724201.html
   My bibliography  Save this article

Multiobjective Optimal Control of Wind Turbines: A Survey on Methods and Recommendations for the Implementation

Author

Listed:
  • Adrian Gambier

    (Fraunhofer Institute for Wind Energy Systems, IWES, Am Seedeich 45, 27572 Bremerhaven, Germany)

Abstract

Advanced control system design for large wind turbines is becoming increasingly complex, and high-level optimization techniques are receiving particular attention as an instrument to fulfil this significant degree of design requirements. Multiobjective optimal (MOO) control, in particular, is today a popular methodology for achieving a control system that conciliates multiple design objectives that may typically be incompatible. Multiobjective optimization was a matter of theoretical study for a long time, particularly in the areas of game theory and operations research. Nevertheless, the discipline experienced remarkable progress and multiple advances over the last two decades. Thus, many high-complexity optimization algorithms are currently accessible to address current control problems in systems engineering. On the other hand, utilizing such methods is not straightforward and requires a long period of trying and searching for, among other aspects, start parameters, adequate objective functions, and the best optimization algorithm for the problem. Hence, the primary intention of this work is to investigate old and new MOO methods from the application perspective for the purpose of control system design, offering practical experience, some open topics, and design hints. A very challenging problem in the system engineering application of power systems is to dominate the dynamic behavior of very large wind turbines. For this reason, it is used as a numeric case study to complete the presentation of the paper.

Suggested Citation

  • Adrian Gambier, 2022. "Multiobjective Optimal Control of Wind Turbines: A Survey on Methods and Recommendations for the Implementation," Energies, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:567-:d:724201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/567/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:567-:d:724201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.