IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p499-d722217.html
   My bibliography  Save this article

Seismic Fragility Assessment of a Novel Suction Bucket Foundation for Offshore Wind Turbine under Scour Condition

Author

Listed:
  • Duc-Vu Ngo

    (Department of Ocean Science and Engineering, Kunsan National University, Gunsan 54150, Korea)

  • Young-Jin Kim

    (Department of Ocean Science and Engineering, Kunsan National University, Gunsan 54150, Korea)

  • Dong-Hyawn Kim

    (School of Architecture and Coastal Construction Engineering, Kunsan National University, Gunsan 54150, Korea)

Abstract

This study proposed a new suction bucket (SB) foundation model for offshore wind turbines (OWT) suitable for a shallow muddy seabed, using more than three single buckets through kinetic derivation. The performance of new optimal foundation was evaluated by its horizontal displacement capacity and compared with a conventional SB composed of three buckets. Under external loads such as earthquakes, wind, and the combination of the both, the stability of this novel SB foundation was verified. The seismic fragility curve was also evaluated at some scour depths. These results were compared with the response of a tripod suction bucket (TSB) foundation, which was also designed for a shallow muddy seabed. The results indicated that scour significantly changed the dynamic response of this novel SB foundation but it had a better bearing capacity than the TSB foundation, despite its smaller size and weight. The fragility of TSB is always higher than the developed foundation in the same environmental condition. With reasonable volume and size, this novel SB foundation has great potential for future industrialization and commercialization.

Suggested Citation

  • Duc-Vu Ngo & Young-Jin Kim & Dong-Hyawn Kim, 2022. "Seismic Fragility Assessment of a Novel Suction Bucket Foundation for Offshore Wind Turbine under Scour Condition," Energies, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:499-:d:722217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/499/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duc-Vu Ngo & Young-Jin Kim & Dong-Hyawn Kim, 2023. "Risk Assessment of Offshore Wind Turbines Suction Bucket Foundation Subject to Multi-Hazard Events," Energies, MDPI, vol. 16(5), pages 1-13, February.
    2. Young-Jin Kim & Duc-Vu Ngo & Jang-Ho Lee & Dong-Hyawn Kim, 2022. "Ultimate Limit State Scour Risk Assessment of a Pentapod Suction Bucket Support Structure for Offshore Wind Turbine," Energies, MDPI, vol. 15(6), pages 1-14, March.
    3. Gee-Nam Lee & Duc-Vu Ngo & Sang-Il Lee & Dong-Hyawn Kim, 2023. "Fatigue Life Convergence of Offshore Wind Turbine Support Structure According to Wind Measurement Period," Energies, MDPI, vol. 16(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:499-:d:722217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.